The X.509 standard, PKI and electronic documents

Antonio Lioy
< lioy @ polito.it >
Politecnico di Torino
Dipartimento di Automatica e Informatica

X.509 certificates
- standard ITU-T X.509:
 - v1 (1988)
 - v2 (1993) = minor
 - v3 (1996) = v2 + extensions + attribute certificate v1
 - v3 (2001) = v3 + attribute certificates v2
- is part of the standard X.500 for directory services (white pages)
- is a solution to the problem of identifying the owner of a cryptographic key
- definition in ASN.1 (Abstract Syntax Notation 1)

X.509 version 3
- standard completed in June 1996
- groups together in a unique document the modifications required to extend the definition of certificate and CRL
- two types of extensions:
 - public, that is defined by the standard and consequently made public to anybody
 - private, unique for a certain user community

Critical extensions
- an extension can be defined as critical or non-critical:
 - in the verification process the certificates that contain an unrecognized critical extension MUST be rejected
 - a non critical extension MAY be ignored if it is unrecognized
 - the different (above) processing is entirely the responsibility of the party that performs the verification: the Relying Party (RP)

Public extensions
- X.509v3 defines four extension classes:
 - key and policy information
 - certificate subject and certificate issuer attributes
 - certificate path constraints
 - CRL distribution points
Key and policy information
- authority key identifier
- subject key identifier
- key usage
- private key usage period
- certificate policies
- policy mappings

Key and policy information
- key usage
 - identifies the application domain for which the public key can be used
 - can be critical or not critical
 - if it is critical then the certificate can be used only for the scopes for which the corresponding option is defined

Certificate subject and certificate issuer attributes
- subject alternative name
- issuer alternative name
- subject directory attributes

Certificate subject and certificate issuer attributes
- subject alternative name
 - allows to use different formalisms to identify the owner of the certificate (e.g. e-mail address, IP address, URL)
 - always critical if the field subject-name is empty

X.509 alternative names
- various possibilities:
 - rfc822Name
 - dNSName
 - IPAddress
 - uniformResourceIdentifier
 - directoryName
 - X400Address
 - ediPartyName
 - registeredID
 - otherName
Certificate path constraints

- basic constraints
- name constraints
- policy constraints

CRL distribution point

- CRL distribution point
 - identifies the distribution point of the CRL to be used in validating a certificate
 - can be:
 - directory entry
 - e-mail or URL
 - critical or non-critical

Private extensions

- it is possible to define private extensions, that is extensions common to a certain user community (i.e. a closed group)
- for example IETF-PKIX defined three private extensions for the Internet user community:
 - subject information access
 - authority information access
 - CA information access

PKIX private extensions

- authority information access
 - indicates how to access information and services of the CA that issued the certificate:
 - certStatus (e.g. URL for OCSP)
 - certRetrieval
 - cAPolicy
 - caCerts
 - critical or not critical
Extended key usage
- in addition or in substitution of keyUsage
- possible values:
 - (id-pkix.3.1) serverAuth [DS, KE, KA]
 - (id-pkix.3.2) clientAuth [DS, KA]
 - (id-pkix.3.3) codeSigning [DS]
 - (id-pkix.3.4) emailProtection [DS, NR, KE, KA]
 - (id-pkix.3.8) timeStamiping [DS, NR]

CRL X.509
- Certificate Revocation List
- list of revoked certificates
- CRLs are issued periodically and maintained by the certificate issuers
- CRLs are digitally signed:
 - by the CA that issued the certificates
 - by a revocation authority delegated by the (indirect CRL, iCRL)

CRL X.509 version 2
- CertificateList ::= SEQUENCE {
 theCertList TBSCertList,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING }
- TBSCertList ::= SEQUENCE {
 version Version OPTIONAL, -- if present, version must be v2
 signature AlgorithmIdentifier,
 issuer Name,
 thisUpdate Time,
 nextUpdate Time OPTIONAL,
 revokedCertificates SEQUENCE {
 userCertificate CertificateSerialNumber,
 revocationDate Time,
 crlEntryExtensions Extensions OPTIONAL
 } OPTIONAL,
 crlExtensions [0] Extensions OPTIONAL
}

Extensions of CRLv2
- crlEntryExtensions:
 - reason code
 - hold instruction code
 - invalidity date
 - certificate issuer
- crlExtensions:
 - authority key identifier
 - issuer alternative name
 - CRL number
 - delta CRL indicator
 - issuing distribution point

Certificate revocation timeline

OCSP
- RFC-2560: On-line Certificate Status Protocol
- IETF-PKIX standard to verify online if a certificate is valid:
 - good
 - revoked
 - revocationTime
 - revocationReason
 - unknown
- response signed by the server (not by the CA!)
- the OCSP server certificate cannot be verified with OCSP itself!
Architecture of OCSP

- possible pre-computed responses
 - decreases the computational load on the server … but makes possible replay attacks!
- possible to obtain information not from CRL

Models of OCSP responder

- Trusted Responder
 - the OCSP server signs the responses with a pair key: cert independent of the CA for which it is responding
 - company responder or TTP paid by the users
- Delegated Responder
 - the OCSP server signs the responses with a pair key: cert which is (can be) different based on the CA for which it is responding
 - TTP paid by the CA

Time-stamping

- proof of creation of data before a certain point in time
- TSA (Time-Stamping Authority)
- RFC-3161:
 - request protocol (TSP, Time-Stamp Protocol)
 - format of the proof (TST, Time-Stamp Token)

PSE (Personal Security Environment)

- each user should protect:
 - his own private key (secret!)
 - the certificates of the trusted root CAs (authentic!)
- software PSE:
 - (encrypted) file of the private key
- hardware PSE:
 - passive = protected keys (same as sw PSE)
 - active = protected keys + crypto operations
- mobility is possible in both cases (but with problems)

Cryptographic smart-card

- chip cards with memory and/or autonomous cryptographic capacity
- simple: DES
- complex: RSA
 - length of the key?
 - generation of the private key on board?
- few memory (EEPROM): 4 - 32 Kbyte

HSM (HW Security Module)

- cryptographic accelerator for servers
 - secure storage of private key
 - autonomous encryption capabilities (RSA, sometimes symmetric algorithms too)
- form factor: PCI board or external device (USB, IP, SCSI, …)
Security API (low level)
- PKCS-11 = (only) crypto engine
 - in software
 - in hardware
 - smart card
 - cryptographic card
 - part of the CDSA architecture
- MS-CAPI CSP (Crypto Service Provider)
 - same functions as PKCS-11 but proprietary API of MS

Secure data formats
- PKCS-7 = secure envelope
 - signed and/or encrypted
- PKCS-10 = certificate request
 - used in the communication among the client and CA / RA
- PKCS-12 = software PSE (Personal Security Environment)
 - transport of keys and certificates
- are not application formats:
 - S/MIME? IDUP-GSS-API? XML-DSIG?

PKCS-7 and CMS formats
- Cryptographic Message Syntax
- PKCS-7 is the RSA standard for secure envelope (v1.5 is also RFC-2315)
- CMS is the evolution of PKCS-7 inside IETF
- allows signing and/or encryption of data, with symmetric or asymmetric algorithms
- supports multiple signatures (hierarchical or parallel) on the same object and can include the certs (and revocation info) to verify the signature
- is a recursive format
- syntax based on ASN.1-BER (DER solo per “signed attributes” e “authenticated attributes”)

Evolution of CMS
- RFC-2630 (jun’99)
 - compatible with PKCS-7 1.5
 - adds key-agreement and pre-shared keys
- RFC-3369 (aug’02)
 - adds pwd-based keys and an extension schema for generic key management
 - algorithms specified in a distinct RFC
- RFC-3852 (jul’04)
 - extension to support generic certificates
- RFC-5652 (sep’09)
 - clarifications about multiple signatures

Algorithms for CMS (I)
- RFC-3370 = base algorithms
 - digest MD5, SHA-1
 - signature RSA, DSA
 - key management
 - agreement = DH
 - transport = RSA
 - symmetric wrapping = 3DES, RC2
 - derivation = PBKDF2
 - content encryption = 3DES-CBC, RC2-CBC
 - MAC = HMAC-SHA1

Algorithms for CMS (II)
- encryption: (RFC-2984) CAST-128, (3058) IDEA, (3565) AES, (3657) Camellia, (4610) SEED
- RFC-4056 = RSASSA-PSS for digital signature
- RFC-4490 = GOST for encryption and digest
- RFC-5084 = AES-CCM and AES-GCM for auth.enc.
- RFC-5409 = Boneh-Franklin and Boneh-Boyen for Identity-Based Encryption
- RFC-5753 + RFC-6161 = ECC
- RFC-5754 = SHA-2
- key transport: (5990) RSA-KEM, (3560) RSAES-OAEP
PKCS-7: structure

- contentInfo
 - contentType
 - content
 . . .
 - 1...N

PKCS-7: contentType

- data
 encoding of a generic sequence of bytes
- signedData
 data + parallel digital signatures (1..N)
- envelopedData
 data encrypted symm. + key encrypted with RSA
- signedAndEnvelopedData
 RSA encryption of (data + digital signatures)
- digestData
 data + digest
- encryptedData
 data encrypted with a symmetric algorithm

PKCS-7: signedData

- contentType
 - content
 - version
 - digestAlgorithm
 - contentInfo
 - certificates
 - cRLs
 - signerInfo
 - version
 - issuer + SN
 - encryptedDigest

PKCS-7: envelopedData

- contentType
 - content
 - version
 - encryptedContentInfo
 - recipientInfo
 - encryptionAlgorithm
 - encryptedContent

PKCS-10

- data to be certified
 - DN
 - public key
 - attributes
- private key of the entity to be certified
- computation of signature
- signature

PKCS #10

- RFC-2986 = PKCS #10 (v 1.7)
- RFC-5967 = application/pkcs10 media type
- format for a certificate request
- the request contains
 - DN + public key + (optional) attributes
- possible attributes:
 - a “challenge password” (for registration or revocation)
 - attributes to be inserted in the certificate (e.g. those described in PKCS #9)
 - other information about the requestor
PKCS-12 format (security bag)

- transport of (personal) cryptographic material among applications / different systems
- transports a private key and one or more certificates
- transports the digital identity of a user
- used by Netscape, Microsoft, Lotus, ...
- criticized from the technical point of view (especially in the MS implementation) but widely used

Formats of signed documents

- signed data
 - document
 - signature
 - enveloping signature (es. PKCS-7)
- document data
 - document
 - signature
 - enveloped signature (es. PDF)
- document
 - signature
 - detached signature (es. PKCS-7)

Multiple signatures (parallel / independent)

- doc
 - ds (doc, X)
 - f (doc, X)
 - f (doc, Y)
 - f (doc, Z)

Multiple signatures (sequential / hierarchical)

- doc
 - f (doc, X)
 - f (-, Y)
 - f (-, Z)

EU Electronic Signature (ES)

- data in electronic form which are attached to or logically associated with other electronic data and which serve as a method of authentication

- BEWARE: a scanned signature is an Electronic Signature (!)

Advanced Electronic Signature (AES)

- an ES which meets the following requirements:
 - uniquely linked to the signatory
 - capable of identifying the signatory
 - created using means that the signatory can maintain under his sole control
 - linked to the data to which it relates in such a manner that any subsequent change of the data is detectable
Qualified Certificate (QC)
- a PKC certifying the identity of a person and containing:
 - an indication that it was issued as a QC
 - the name of the signatory or a pseudonym, which shall be identified as such
 - provision for a specific attribute of the signatory to be included if relevant, depending on the purpose for which the certificate is intended
 - limitations on the scope of the certificate, if any
 - limits on the value of transactions, if any
- RFC-3739 = IETF-PKIX profile for QC

Qualified Electronic Signature (QES)
- an AES (a) based on a QC, and (b) created by a secure-signature-creation device
- satisfies the legal requirements of a signature in relation to data in electronic form in the same manner as a handwritten signature satisfies those requirements in relation to paper-based data
- is admissible as evidence in legal proceedings

Legal effects
- Member States shall ensure that an electronic signature is not denied legal effectiveness and admissibility as evidence in legal proceedings solely on the grounds that it is:
 - in electronic form, or
 - not based upon a qualified certificate, or
 - not based upon a qualified certificate issued by an accredited certification-service-provider, or
 - not created by a secure signature-creation device

ETSI standards for electronic signature
- CMS Advanced Electronic Signatures (CAdES)
 - ETSI TS 101 733 (version 1.4.0)
 - ETSI TS 102 734 = profiles of CAdES
- based upon other standards:
 - RFC-2630 [CMS] Cryptographic Message Syntax
 - RFC-2634 [ESS] Enhanced Security Services
 - “raw” signature format (i.e., binary over a blob)
 - evolution to application formats (XML and PDF)

ETSI: CAdES formats
- ES-C
- ES-T
- ES-X

Extended ES (ES-X)
- if the CA certificates may be compromised, then the formats ES-X are suggested
- ES-X-Timestamp (type 1):
 - ES-C with a TS over the whole ES-C
 - useful when OCSP is used
- ES-X-Timestamp (type 2):
 - ES-C with a TS over just the references to the certificates and the revocation informations
 - useful when CRL is used

www.etsi.org/WebSite/Technologies/ElectronicSignature.aspx
TSL

- TSL = Trust service Status List
- contains TSP (Trust-Service Provider)
- signed list
 - list of the TSP and their services (certification, revocation, time-stamping, ...)
 - state of each TSP (supervised, suspended, revoked, ...)
 - history of the state of each TSP
 - schema and schema operator
- "white list" for the accredited TSP
- "black list" for the not accredited TSP

Other ETSI ES formats

- XML Advanced Electronic Signatures (XAdES)
 - ETSI TS 101 903
 - ETSI TS 102 904 = profiles of XAdES
 - based upon XML-dsig
- PDF Advanced Electronic Signature Profiles (PAdES) for the ISO-32000 format (PDF)
 - ETSI TS 102 778-1 = overview
 - ETSI TS 102 778-2 = basic
 - ETSI TS 102 778-3 = enhanced (BES, EPES)
 - ETSI TS 102 778-4 = long-term validation (LTV)
 - ETSI TS 102 778-5 = XML content

The "macro" problem

- e-signing an e-document containing a macro is a bad idea

```
document
... @today 21-may-03
...
```
signed on 21-may-2003

```
document
... @today 22-may-03
...
```
verified on 22-may-2003: is the signature valid?

WYSIWYS

- What You See Is What You Sign
- highly desirable
- is a problem of the application developers
- in Austria, it is a fundamental requirement of the law about e-signatures and e-documents
- do we really need it? compare it to fine prints in paper documents