The X.509 standard, PKI and electronic documents

Antonio Lioy
< lioy@polito.it >

Politecnico di Torino
Dipartimento di Automatica e Informatica

Certification Authority

X.509 certificates

- standard ITU-T X.509:
 - v1 (1988)
 - v2 (1993) = minor
 - v3 (1996) = v2 + extensions + attribute certificate v1
 - v3 (2001) = v3 + attribute certificates v2
 - is part of the standard X.500 for directory services (white pages)
 - is a solution to the problem of identifying the owner of a cryptographic key
 - definition in ASN.1 (Abstract Syntax Notation 1)
X.509 version 3
- standard completed in June 1996
- groups together in a unique document the modifications required to extend the definition of certificate and CRL
- two types of extensions:
 - public, that is defined by the standard and consequently made public to anybody
 - private, unique for a certain user community

Critical extensions
- an extension can be defined as critical or non-critical:
 - in the verification process the certificates that contain an unrecognized critical extension MUST be rejected
 - a non-critical extension MAY be ignored if it is unrecognized
- the different (above) processing is entirely the responsibility of the party that performs the verification: the Relying Party (RP)

Public extensions
- X.509v3 defines four extension classes:
 - key and policy information
 - certificate subject and certificate issuer attributes
 - certificate path constraints
 - CRL distribution points
Key and policy information

- authority key identifier
- subject key identifier
- key usage
- private key usage period
- certificate policies
- policy mappings

Key and policy information

- key usage
 - identifies the application domain for which the public key can be used
 - can be critical or not critical
 - if it is critical then the certificate can be used only for the scopes for which the corresponding option is defined

Key and policy information

- key usage – the applications that can be defined are:
 - digitalSignature (CA, user)
 - nonRepudiation (user)
 - keyEncipherment (user)
 - dataEncipherment
 - keyAgreement (encipherOnly, decipherOnly)
 - keyCertSign (CA)
 - cRLSign (CA)
Certificate subject and certificate issuer attributes

- subject alternative name
- issuer alternative name
- subject directory attributes

Certificate subject and certificate issuer attributes

- subject alternative name
 - allows to use different formalisms to identify the owner of the certificate (e.g. e-mail address, IP address, URL)
 - always critical if the field subject-name is empty

X.509 alternative names

- various possibilities:
 - rfc822Name
 - dNSName
 - iPAddress
 - uniformResourceIdentifier
 - directoryName
 - X400Address
 - ediPartyName
 - registeredID
 - otherName
Certificate path constraints

- basic constraints
- name constraints
- policy constraints

Certificate path constraints

- **basic constraints**
 - indicates if the subject of the certificate can act as a CA:
 - BC=true : the subject is a CA
 - BC=false : the subject is an EE (End Entity)
 - furthermore it is possible to define the maximum depth of the certification tree (only if BC=true)
 - critical or non critical
 - it is suggested to always mark this extension as critical

Certificate path constraints

- **name constraints**
 - only for CA
 - space of names that can be certified by a CA
 - critical or non critical
CRL distribution point

- CRL distribution point
 - Identifies the distribution point of the CRL to be used in validating a certificate
 - Can be:
 - Directory entry
 - E-mail or URL
 - Critical or non-critical

Private extensions

- It is possible to define private extensions, that is extensions common to a certain user community (i.e. a closed group)
- For example IETF-PKIX defined three private extensions for the Internet user community:
 - Subject information access
 - Authority information access
 - CA information access

PKIX private extensions

- Authority information access
 - Indicates how to access information and services of the CA that issued the certificate:
 - CertStatus (e.g. URL for OCSP)
 - CertRetrieval
 - cAPolicy
 - caCerts
 - Critical or not critical
Extended key usage

- in addition or in substitution of keyUsage
- possible values:
 - (id-pkix.3.1) serverAuth [DS, KE, KA]
 - (id-pkix.3.2) clientAuth [DS, KA]
 - (id-pkix.3.3) codeSigning [DS]
 - (id-pkix.3.4) emailProtection [DS, NR, KE, KA]
 - (id-pkix.3.8) timeStamping [DS, NR]

CRL X.509

- Certificate Revocation List
- list of revoked certificates
- CRLs are issued periodically and maintained by the certificate issuers
- CRLs are digitally signed:
 - by the CA that issued the certificates
 - by a revocation authority delegated by the (indirect CRL, iCRL)

CRL X.509 version 2

CertificateList ::= SEQUENCE {
 theCRLList TBSCertificateList,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING }

TBSCertificateList ::= SEQUENCE {
 version Version OPTIONAL, -- if present, version must be v2
 signature AlgorithmIdentifier, issuer
 thisUpdate Time,
 nextUpdate Time OPTIONAL,
 revokedCertificates SEQUENCE { userCertificate CertificateSerialNumber,
 revocationDate Time, crlEntryExtensions Extensions OPTIONAL
 } OPTIONAL,
 crlExtensions [0] Extensions OPTIONAL
}
Extensions of CRLv2

- crlEntryExtensions:
 - reason code
 - hold instruction code
 - invalidity date
 - certificate issuer
- crlExtensions:
 - authority key identifier
 - issuer alternative name
 - CRL number
 - delta CRL indicator
 - issuing distribution point

Certificate revocation timeline

- CRL n issued
- cert revocation request
- time
- CRL n+1 issued

OCSP

- RFC-2560: On-line Certificate Status Protocol
- IETF-PKIX standard to verify online if a certificate is valid:
 - good
 - revoked
 - revocationTime
 - revocationReason
 - unknown
- response signed by the server (not by the CA!)
- the OCSP server certificate cannot be verified with OCSP itself!
Architecture of OCSP

- possible pre-computed responses
 - decreases the computational load on the server … but makes possible replay attacks!
- possible to obtain information not from CRL

Models of OCSP responder

- Trusted Responder
 - the OCSP server signs the responses with a pair key:cert independent of the CA for which it is responding
 - company responder or TTP paid by the users
- Delegated Responder
 - the OCSP server signs the responses with a pair key:cert which is (can be) different based on the CA for which it is responding
 - TTP paid by the CA

Time-stamping

- proof of creation of data before a certain point in time
- TSA (Time-Stamping Authority)
- RFC-3161:
 - request protocol (TSP, Time-Stamp Protocol)
 - format of the proof (TST, Time-Stamp Token)
PSE (Personal Security Environment)
- Each user should protect:
 - His own private key (secret!)
 - The certificates of the trusted root CAs (authentic!)
- Software PSE:
 - An (encrypted) file of the private key
- Hardware PSE:
 - Passive = protected keys (same as sw PSE)
 - Active = protected keys + crypto operations
- Mobility is possible in both cases (but with problems)

Cryptographic smart-card
- Chip cards with memory and/or autonomous cryptographic capacity
- Simple: DES
- Complex: RSA
 - Length of the key?
 - Generation of the private key on board?
- Few memory (EEPROM): 4 - 32 Kbyte

HSM (HW Security Module)
- Cryptographic accelerator for servers
 - Secure storage of private key
 - Autonomous encryption capabilities (RSA, sometimes symmetric algorithms too)
- Form factor: PCI board or external device (USB, IP, SCSI, ...)

© A.Lioy - Politecnico di Torino (1997-2011)
Security API (low level)

- PKCS-11 = (only) crypto engine
 - in software
 - in hardware
 - smart card
 - cryptographic card
 - part of the CDSA architecture
- MS-CAPI CSP (Crypto Service Provider)
 - same functions as PKCS-11 but proprietary API of MS

Secure data formats

- PKCS-7 = secure envelope
 - signed and/or encrypted
- PKCS-10 = certificate request
 - used in the communication among the client and CA / RA
- PKCS-12 = software PSE (Personal Security Environment)
 - transport of keys and certificates
- are not application formats:
 - S/MIME? IDUP-GSS-API? XML-DSIG?
 - legal electronic documents?

PKCS-7 and CMS formats

- Cryptographic Message Syntax
- PKCS-7 is the RSA standard for secure envelope (v1.5 is also RFC-2315)
- CMS is the evolution of PKCS-7 inside IETF
- allows signing and/or encryption of data, with symmetric or asymmetric algorithms
- supports multiple signatures (hierarchical or parallel) on the same object and can include the certs (and revocation info) to verify the signature
- is a recursive format
- syntax based on ASN.1-BER (DER solo per “signed attributes” e “authenticated attributes”)

© A.Lioy - Politecnico di Torino (1997-2011)
Evolution of CMS

- RFC-2630 (jun'99)
 - compatible with PKCS-7 1.5
 - adds key-agreement and pre-shared keys
- RFC-3369 (aug'02)
 - adds pwd-based keys and an extension schema for generic key management
 - algorithms specified in a distinct RFC
- RFC-3852 (jul'04)
 - extension to support generic certificates
- RFC-5652 (sep'09)
 - clarifications about multiple signatures

Algorithms for CMS (I)

- RFC-3370 = base algorithms
 - digest MD5, SHA-1
 - signature RSA, DSA
 - key management
 - agreement = DH
 - transport = RSA
 - symmetric wrapping = 3DES, RC2
 - derivation = PBKDF2
 - content encryption = 3DES-CBC, RC2-CBC
 - MAC = HMAC-SHA1

Algorithms for CMS (II)

- encryption: (RFC-2984) CAST-128, (3058) IDEA, (3565) AES, (3657) Camellia, (4610) SEED
- RFC-4056 = RSASSA-PSS for digital signature
- RFC-4490 = GOST for encryption and digest
- RFC-5084 = AES-CCM and AES-GCM for auth.enc.
- RFC-5409 = Boneh-Franklin and Boneh-Boyen for Identity-Based Encryption
- RFC-5753 + RFC-6161 = ECC
- RFC-5754 = SHA-2
 - key transport: (5990) RSA-KEM, (3560) RSAES-OAEP

© A.Lioy - Politecnico di Torino (1997-2011)
PKCS-7: structure

![Diagram of PKCS-7 structure]

PKCS-7: contentType

- **data**: encoding of a generic sequence of bytes
- **signedData**: data + parallel digital signatures (1..N)
- **envelopedData**: data encrypted symm. + key encrypted with RSA
- **signedAndEnvelopedData**: RSA encryption of (data + digital signatures)
- **digestData**: data + digest
- **encryptedData**: data encrypted with a symmetric algorithm

PKCS-7: signedData

![Diagram of signedData structure]
PKCS-7: envelopedData

envelopedData

content

version

issuer + SN

encAlgorithm

encKey

encryptedContentInfo

recipientInfo

encryptedContent

contentType

encryptionAlgorithm

PKCS-10

data to be certified

DN

public key

attributes

computation of signature

PKCS#10

signature

private key of the entity to be certified

PKCS #10

- RFC-2986 = PKCS #10 (v 1.7)
- RFC-5967 = application/pkcs10 media type
- format for a certificate request
- the request contains
 - DN + public key + (optional) attributes
- possible attributes:
 - a “challenge password”
 (for registration or revocation)
 - attributes to be inserted in the certificate
 (e.g. those described in PKCS #9)
 - other information about the requestor
PKCS-12 format (security bag)
- transport of (personal) cryptographic material among applications / different systems
- transports a private key and one or more certificates
- transports the digital identity of a user
- used by Netscape, Microsoft, Lotus, …
- criticized from the technical point of view (especially in the MS implementation) but widely used

PKCS-12

Formats of signed documents
- Signed data
 - Document
 - Data
 - Signature
 - Enveloping signature (es. PKCS-7)
- Enveloped signature
 - Document
 - Data
 - Signature
 - Enveloped signature (es. PDF)
- Detached signature
 - Document
 - Data
 - Signature
 - Detached signature (es. PKCS-7)

Multiple signatures (parallel / independent)
- doc
 - ds (doc, X)
- doc
 - f (doc, X)
 - f (doc, Y)
- doc
 - f (doc, X)
 - f (doc, Y)
 - f (doc, Z)
Multiple signatures (sequential / hierarchical)

```
doc
f (doc, X)
doc
f (doc, X)
  f (-, Y)
doc
f (doc, X)
  f (-, Y)
  f (-, Z)
```

EU Electronic Signature (ES)

- data in electronic form which are attached to or
 logically associated with other electronic data and
 which serve as a method of authentication

- BEWARE: a scanned signature is an Electronic
 Signature (!)

Advanced Electronic Signature (AES)

- an ES which meets the following requirements:
 - uniquely linked to the signatory
 - capable of identifying the signatory
 - created using means that the signatory can
 maintain under his sole control
 - linked to the data to which it relates in such a
 manner that any subsequent change of the data is
detectable
Qualified Certificate (QC)

- a PKC certifying the identity of a person and containing:
 - an indication that it was issued as a QC
 - the name of the signatory or a pseudonym, which shall be identified as such
 - provision for a specific attribute of the signatory to be included if relevant, depending on the purpose for which the certificate is intended
 - limitations on the scope of the certificate, if any
 - limits on the value of transactions, if any
- RFC-3739 = IETF-PKIX profile for QC

Qualified Electronic Signature (QES)

- an AES (a) based on a QC, and (b) created by a secure-signature-creation device
- satisfies the legal requirements of a signature in relation to data in electronic form in the same manner as a handwritten signature satisfies those requirements in relation to paper-based data
- is admissible as evidence in legal proceedings

Legal effects

- Member States shall ensure that an electronic signature is not denied legal effectiveness and admissibility as evidence in legal proceedings solely on the grounds that it is:
 - in electronic form, or
 - not based upon a qualified certificate, or
 - not based upon a qualified certificate issued by an accredited certification-service-provider, or
 - not created by a secure signature-creation device
ETSI standards for electronic signature

- **CMS Advanced Electronic Signatures (CAdES)**
 - ETSI TS 101 733 (version 1.4.0)
 - ETSI TS 102 734 = profiles of CAdES
- **based upon other standards:**
 - RFC-2630 [CMS] Cryptographic Message Syntax
 - RFC-2634 [ESS] Enhanced Security Services
- **“raw” signature format (i.e. binary over a blob)**
 - evolution to application formats (XML and PDF)

www.etsi.org/WebSite/Technologies/ElectronicSignature.aspx

ETSI: CAdES formats

and the extended formats ES-X ...

Extended ES (ES-X)

- if the CA certificates may be compromised, then the formats ES-X are suggested
- **ES-X-Timestamp (type 1):**
 - ES-C with a TS over the whole ES-C
 - useful when OCSP is used
- **ES-X-Timestamp (type 2):**
 - ES-C with a TS over just the references to the certificates and the revocation informations
 - useful when CRL is used
TSL

- TSL = Trust service Status List
 - contains TSP (Trust-Service Provider)
- signed list
 - list of the TSP and their services (certification, revocation, time-stamping, …)
 - state of each TSP (supervised, suspended, revoked, …)
 - history of the state of each TSP
 - schema and schema operator
- “white list” for the accredited TSP
- “black list” for the not accredited TSP

Other ETSI ES formats

- XML Advanced Electronic Signatures (XAdES)
 - ETSI TS 101 903
 - ETSI TS 102 904 = profiles of XAdES
 - based upon XML-dsig
- PDF Advanced Electronic Signature Profiles (PAdES) for the ISO-32000 format (PDF)
 - ETSI TS 102 778-1 = overview
 - ETSI TS 102 778-2 = basic
 - ETSI TS 102 778-3 = enhanced (BES, EPES)
 - ETSI TS 102 778-4 = long-term validation (LTV)
 - ETSI TS 102 778-5 = XML content

The “macro” problem

- e-signing an e-document containing a macro is a bad idea

```
document
...  
@today 21-may-03
...

signed on 21-may-2003
```

```
document
...  
@today 22-may-03
...

verified on 22-may-2003: is the signature valid?
```
WYSIWYS

- What You See Is What You Sign
- highly desirable
- is a problem of the application developers
- in Austria, it is a fundamental requirement of the law about e-signatures and e-documents
- do we really need it? compare it to fine prints in paper documents