webinos

Secure WebOS Application Delivery Environment

Deliverable B.1
FPZICTF20095 257103
June2011

D3.1: webinos phase | architecture and
components

ﬁweblnos

FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:2 of 276

Project Number

FPZCTF20095 257103

Project Title Secure WebOS Application Delivery Environngenrebinog
Ddiverable Type Public
Deliverable Number D31

Contractual Delivery Date
Actual Date of Delivery
Title of Deliverable
Contributing Work Package
Nature of Deliveable

Editor

Authors

June, 38, 2011

June, 38, 2011

webinos phase | architecture and components
WP3

Report

Fraunhofer FOKUS

Fraunhofer FOKUS, Deutsche Telekom, ERCIM, University of Oxf
Telecom lItaliaTNO, BMW F+T, AmbieSense, SonyErigsSamsung,
Antenna Volantis, VisionMobileNTUA, ISMB, IBBT, Polito, UNICT
TUM, DOCOMO, Impledelefonica

brd,

Document History
Version Date

Author (Partner)

Remarks
0.9 29/06/2011 Fraunhofer FOKUS Initial version created from Wiki
1.0h 30/06/2011 Fraunhofer FOKUS Updated Word-formatted version

¢ﬂwebm°5 FP7ICT-20095 257103

page:3of 276 D3.1: Webinos phasedrchitecture and components

Abstract

This deliverable specifies the architecture and required infrastructure and service components for the first phase
of the webinos project.

The primary areas covered in this docem are the webinos foundations, extension handling, authentication,
discovery, messaging, context, securfiyivileged applications and analytics. These topics are supplemaenitad
a component overview, a high level network overlay architecture, asagedession and synchronisation hand|ing
decriptions.

In the first part of thedeliverable, background information is given about the individual topics, presenting the
lessons learned from the current state of the art, highlighting which existing standartipractices were suitable
for adaptation by webinos and, in those cases where no existing standard covered the requirements of webinos,
which standards and practices were used as a basis on which the webinos specifications were built.

This first part igrimarily an information section, allowing readers not directly involved with the webinos projéct to
follow the reasoning of decisions made in the work package 3 of the webinos project, without having to study, for
example, the underlying use cases, sa@wmand requirements from work package 2.

The second partf the deliverablecontains the actual architectural specification for the webinos platform. From
an implementation point of view, it should be sufficient to read only sections 4 and 5 of thigmdlie and hav
all requires information regarding architectural and component specification available, though, without the
background knowledge, this would just provide the "what" without the "why".

U

Two notes:

1. This document does not describe the waisrplatform completelty. It only covers the architecture and its
components. It is a companion document to the webinos D3.2 and D3.5 deliverables, which cover the
JavaScriptdevice APIs and the Security Framework, respectively. All ttoeementstogether comprise the
webinos phase | specification.

2. This Word/PDF linear document represents only a snapshot of the specificatibe faurpose of
dissemination, archieving, reviewing, delivery and dissemination as a single docdrersictual specification
is located on the webinos redmine/Wiki. That version is the @hevantfor the work within the project.

Due to the close interworking between the specification and the implementation work packages in webinps,
experience gained about gaps that need to be filled in the specification will be fed back directly into the
online specification. The Word/PDF document has been exported from the online version and represents
the status of the specification on Jured”, 2011.

Keyword list:
webinos, specification, architecture, foundations, authentication, discovery, messaging, cpntext,
security, analytics, metrics, network overlay, high level architecture, key architectural compgnents,
session creation

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:4 of 276

Cortent

1. INTRODUCTION i eeeer et eeee e e e e e et e e e e e e e eba s eman e e e eeene 7

2. METHODOLOGY .ottt e ettt emen e e e e e et e e e e e e e taa smra e e e 8
GUILEIINES. ...ttt emmr e e e e e e e e eeemr e e e e e e s e e e e e e e 9
WWOTK ATBAS ...ttt ettt eeee et e e e e et b et e e e e e s nsb e enssn e e e e e e e e nnnee s 10

3. BACKGROUND ... eeee et eeeea e e et e e e e e e aea s amen e e e e ennes 11
FOUNAALIONS. ...ttt ee e bbb e e e e 11
EXEENSIONS ...ttt 16
AUTNENTICATION ...t e e e et e e e e e e e e e emmmr e e e e e e eaeeeeeas 22
Y101V /= T Y2 PRSPPI 26
1Y LSTSEST= Vo 11 o PSSP 32
(O 0] 01 (=) F PP PP PPPPPPTPT 34
SeCUrtY @Nd PrIVACYcooiiiiiiiiii i e e eeee e 36
A1 (=T T=To Y o] o 1 PP PP PP STRPPPPPPR 38
AANBIYTICS ..ttt e e e e e ettt e e e e e e e e e e n—nr e 51

4. HIGH LEVEL OVERLAY A RCHITECTUREccoiiiii e 29
ATCNITECIUIE ..t eeena et e e ettt e et e e e s emmn e e e e e e e e e eeeeeas 59

Key architectural COMPONENTS........coiiiiiiiie it e e 64

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:5 of 276
ST E] (o] o [OO PP PP PRTPPTPPPPP 74
FOUNDALIONS.ceiteeii et e e et e e e s rmme e e e e e e e n e 17
EXEENSIONS ...ttt 97
Authentication and IdENTILYoooiiiiie e e e 105
DYoo 1Y/ oY PP PP PP P P PPPPPPPPPPPPPPP 128
1Y LSTST Y= Vo 11 o 155
(O0] 01 (C) PP 173
Y=o YRR 193
Privilege Apps and Services (ACCESS CONLIOL)........cvvviiiiiiieiiiiiiieeeee e 217
ANBIYTICS ..t e et et e e e e e e e e e e e e amnr e e e e e e e 230
SYNCRIONISALION ...ttt 246

6. CONCLUSIONS ...t rmen e e e e e e e e e e e e ea s smna e e e 248

7. GLOS S ARY et anene e e e e 249
Definitions of Stakenolders...........oovviiiiiiii e 249
General DefiNITIONS. ...t e eeer et e e e e e e e e e e e e e e s s s s ammne e e e 250
o] (0])Y/ 0 7 PP 271

8. RESOURCES. ... o eree e e e e e et e ettt rrne e e e e e e e e eeeees 273

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:6 of 276
LTAY LY o AN o] o= (o] o 1S3 273
(=] Y 0] FS = VT I o 18]S 273
AUTNENTICATION ... r e et r e e et e e e e e e e s smmr e e e e e e e e e e s 274
T =Tol U | TP PPPPPPPPPPRPPPPP 274

GlOSSANYRETEIENCES ...t e e e eeee e 275

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:7 of 276

1. Introduction

The purpose of thevebinos projecis to define and deliver an Open Source platform, which will Enab
Web applications and services to be used and shared consistently and securely over a broad spectrum of
connected devices.

To achieve this, it is insufficient to limit the specification to APIs to be provided by individual devices to
allow access to des# resources, but it is also necessary to define and provide an architecture and
infrastructure to allow applications to run not only on a single device, but also across devices and
domains.

Increasingly users own more connected devices and users arengerlsatisfied to handle devices and
applications on an individual basis, but expect applications to keep preferences and status information
synchronized across multiple domains, devices and, if appropriate, applications.

This applies to device features asll. Already many modern TV sets allow the use of smart phones as
input devices, though this is currently handled on a proprietary manner. A mallembased platform
needs to define and provide functionality to handle such interactions in consistent fandthe
application programmer, easily accessible manner.

Other issues that require services that go beyond the capability of individual devices are the handling of
userauthenticationcross device events, metrics and application distribution.

In all these cases, it is not sufficient to provide a simple device API, but it is also required to describe the
underlying architecture and service requirements.

The tagline of the webinos project is "Secure Web Operating System Application Delivery Environment",
indicating that security is a significant part of the project. In the specification part of the project, the
handling of security and privacy aspects and the creation and definition of a security architecture was
covered by an individual project task to @ns that the topic is handled adequately.

To cover all areas adequately, the webinos specification consists of three parts:
e DO03.1 vebinos phase | architecture and components
o DO03.2webinosphase | device, network, and seng&de API specifications
o DO03.5webinosphase | security framework

(The numbering is an artefact of the webinos project plan. There are no missing 3.3 and 3.4 deliverables
- the numbers are reserved for an update of the 3.1 and 3.2 deliverables in phase Il of the webinos
project.)

The firg deliverable (which is this one, D03.1) covers the architecture and required infrastructure and
service components. The intended audience for this deliverable are providers of the webinos platform,
since they will need to provide these components. For ligggon programmers the background
sections may be of interest to get an overview of these components and their interactions, since a good

file://redmine/projects/wp3-1/wiki/Glossary%23Webinos-project

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:8 of 276

understanding of the framework may allow for more efficient use of the system, though-aepih
knowledge of theriternal interfaces and structures is not that useful. This is also one of the reasons to
have the background section of this document separate from the detailed specification section.

The second deliverable (i.e. D03.2) describes the APIs that will biakdeatio a Véb application
programmer on a webinos device. The intended audience are application programmers who want to
provide webinos enabled and supported applications and are going to use the APIs. In the
implementation phase of the platform, the awdlice, of course, also includes the platform providers,
who will provide the APlIs.

The third deliverable (i.e. D03.5) describes the security framework for webinos. As security needs to
encompass the full application environment, this covéfsb security arbitecture and services as well
on-device security and policy handling.

All three deliverables together comprise the initial webinos system specification, which will serve as
basis for the development of the open source platform.

Based on the experiencestivimplementing and using webinos, updated versions of these deliverables
will be published in August 2012.

2. Methodology

The methodology for deriving the specification was based on the waterfall model.

In the initial step, a long list of scenarios and ustries involving a Vb application platform were
defined (see also Deliverable 2.1).

From these scenarios and user stories, a-setbwas selected, representing advanced, innovative and
typical usage.

Based on these representative scenarios, which weagniy informal descriptions of applications and
their usage, use cases were derived, which describe the interaction between the actors and the
software in a more formalized way. From these use cases, requirements pertaining to the underlying
platform, andincluding security requirements, were extracted (see also Deliverable D2.2). This process
ignored requirements that were application specific, unless they implied requirements for the
underlying platform.

Following this phase, theequirements (erived fran presumed representative scenarios) were checked
against the original set of scenarios and user stories to ensure that no requirements were missed.

Based on these requirements, together with known requirements from oteb application platform

work perbrmed by project partners (such as W3C, BONDI, WAC or OIPF) the webinos specification was
developed. Since it is unpredictable what features a future application, utilizing the platform, might
require, the set of requirements for a platform can never bemptete. However, basing the
requirements on a wide range of innovative scenarios, combined with the experience of the project

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:9 of 276

members and external feedback, should result in a specification that fills the most crucial currently
foreseeable needs and remaiopen for adaption to future needs.

This anticipated adaptation for future needs will be covered in the webinos project in Phase 2, which will
review, revise and refine the specification in this document. The development of the platform and
applications Wl serve as proabf-concept and will provide valuable feedback for Phase 2 enhancement
of the specifications.

Guidelines

When drafting the specification, webinos project members took a number of guidelines into account:
Don't re-invent the wheel

Where ®lutions in an area already existed and were found valuable and acceptable, these were utilized
and adapted as far as possible and needed. There was a strong bias in the project against innovating for
the sake of innovating. Existing solutions, standamid specifications were referenced and-used. If

existing solutions were almost sufficient, but not meeting webinos requirements in all details, care was
taken to do only the smallest number of changes, needdflifd the requirements.

Consider licensig issues

If available and appropriate, the specifications are based on open standards to avoid the specification
and subsequent implementations to be encumbered by legal and licensing issues, hindering adoption. In
areas where only proprietary standards meeavailable or dominating, care was taken to provide
specifications in a way to allow implementation independently of proprietary solutions, but, if possible,
stay close enough to them to allow easy mapping to such solutions to allow their usage imamerite

where these are ubiquitous.

Be secure by design

To avoid the common risk of developing an architecture and a specification solely on functional
requirements and then tagging on security as an afterthought, webinos has a specific task dedicated to
developing a security and policy framework and integrating it into the architecture from the beginning.
Unlike other parts of the specification work package, which operate in two distinct phases, the security
task runs continuously across the project lifenéi to ensure that security and policy concerns can be
addressed quickly and sufficiently.

Be developer friendly

The key for success of a platform is the acceptance by developers. To achieve this, webinos needs to
provide features to allow developers fastemore attractive and more efficient developmentof
applications that can communicate and use resources across devices and apps. Whilst current platforms
provide access to local hardware and other resources, they do not provide an infrastructure and

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:100f276

significant support for multidevice usage. Communication, cooperation and sharing between apps and
devices currently need to be provided by the developer.

To make life easier for developers, webinos considers not only the API on the device itself (covered in
deliverable 3.2), but also a supporting infrastructure for, among others, user ID management, discovery
(of devices, applications and services), event handling across devices, metrics and context handling.
webinos seeks to provide the developers and servimoviders with a common neproprietary
infrastructure enabling or simplifying the use of resources between applications (also across different
developers).

Work Areas

To create the first specification of the webinos platform, based on the requiremamdsfollowing the
guidelines, fifteen work groups were created initialliasked to analyze existing solutions, issues and
remaining gaps in respect to the requirements.

As a result of this initial work, some overlap between the areas was detected angrdbps were
restructured to avoid duplication of work and unnecessary communication overhead. (As an example:
Whilst the scope and problem space of the grodymplication/Service Discoveayd Device Discovery
differed, the similarities of these groups veclarger and consequently, the two groups were combined.)

Work then continued in ten work areas for which specifications were defined, which led to the Overlay
Network Architecture and the seven specification areas contained in this deliverable. (Fer bett
structuring of the deliverable, two of the smaller areAdeb application packaging/handlingnd
Extension Handlingrere combined in thd=oundationssection; Privileged Applicationbecame part of

the Policychapter, reducing the ten work areas to eigigctions of the specification.)

The purpose of splitting the effort into different, mostly disjunct, work areas was to be able to work in
small teams, often based in only one or two companies, to allow fast and efficient work and
communication within thevork areas. To avoid the risk of company bias and to ensure the fitting in of
the individual areas into the overall concept of webinos, alignment and "bringing the pieces together"
was assured through regular conference calls, cteam workings and throgh final peer review across

the teams.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:110f276

3. Background

Foundations

The foundations section is about specifying the technological background of webinos applications
including application packaging and {dgcle. This also includes functional and +ionctional
requirements of webinos Web Rdime (WRT) environments, e.g., how to pass applications to webinos
WRTs and how to share applications across WRTS.

What's in scope

Foundations define how webinos look like from a technical point of view. In geneddfines the
packaging and configuration of webinos applications as well as theylife including requirements on

the WRT which are related to application handling and interoperability across WRTSs. It also includes how
webinos applications can be packagfr distributed application use casdacluding the exposure of
application functions. Thus, applications will be able to share their functionality across distributed
components of an application as well as across other full applications.

What's out of scope

Allowing Web based applications to access device specific features introduces security risks. The
foundations specification does not define the webinos security framewoikis is done in separate
sections and deliverables, but it includes relasonvhere needed. Also content protection like DRM or
licensing is out of scope.

Webinos applications will be created using Web technologies,JagaScriptCSS and HTML. To achieve

a good level of interoperability between WRAsommon set of supportedeb technologies is crucjal

but elaborating on Web technologies to be supported by webinos WRTs and defining which features of
which Web technology must be supported is not discussed in the foundations section. Instead, WAC has
done much work here and éhoutcome is referenced and mandated for webinos WRTSs.

Review of State of the Art

In general applications have a central entry point for both, installing and executingh makes them
easy to transport, install and use. Web technology based applicatomm£ommonly hosted on Web
servers where each document is linked to other documents which are needed for proper rendering.
This approach provides a good mechanism to access an application bymsing an URL. But there is

a lack of descriptive data fall this content (including e.gJavaScriptmeta-data like the author, an
application description or links to contacting thethorauthor, whichcan be valuable for the user. This
information can be added to native applications like MS Windows exeadalr addition, in the Web
there is no means to describe which documeats belonging to an application and are needed for a

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:120f 276

proper execution. In this section some recent approaches for packaging Web content as a whole
application are described.

Google Web application packaging (.crx)

Chrome Google introduced support for installable hosted and packaged Web applications (stored in .crx
format). The developer has to write a JSON based manifest file (manifest.json) that contains some
metadata about the apptation. This manifest.json file must then be placed in a .crx file, which basically
is a renamed zip file.

Example of Usage taken from Google Chrome Developer Page [CRX]

1

2 "name": "Google Mail",

3 "description": "Read your gmail”,
4 "version "

5 "app":{

6 urls": [

7 "*://mail.google.com/mail/",
8 "*:/lwww.google.com/mail/"
9 1]

10 "launch™: {

11 "web_url": "http://mail.google.com/mail/"
12}

13 }

14 “icons": {

15 "128": "icon_128.png"

16 }

17 "permissions": [

18 "unlimitedStorage",
19 ‘"notifications"

20]

21}

The JSON example describes the Google Mail Web application as installable hosted application, the
application URLs pointing to remote locatipnssing theweb_ul key. In addition to the provided
metadata, HTML5 permissions can be requested during installation. If the user clicks a link to a .crx file
within the Chrome Web browsethe application is installed to the Google Chrome application Gallery.

If the devdoper dees't want to maintain a server that serves a hosted application or if he sviant
provide the best offine case experiencée can create a packaged application. To make an application
a fully packaged application the contents are placed in tne file and the manifest file must include
these details:

1 "app":{

2 "launch™ {

3 "local_path": "main.html"
4}

5}

In addition to access to common Web featur@sstallable applications can have access to Google
Chrome's extensioAPIs, e.g., manipulating context menus or creating background pages. To stimulate

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:130f276

the usage of Google's application packaging, Google's Web application store supports .crx files which
can be uploaded to the store using a developer frontend. Afterwardg éne search and browsable in
the store where they can be installed from to the local application Gallery.

Mozilla Web Applications

In early 2011 Mozilla announced the Open Web Apps project [OpenWebApps] which aims to allow
everyone to develogheir own Web application store. This also includes the definition of application
packages and the possibility of installing them. Mozilla also ad&ON based manifest file that includes
human readable and machine readable metadata about the application. Afiptisaare able to "self

install" using an API call provided by Mozilla Browsers (navigator.apps.install()). Manifest files can be
served as files where the file extension .webapp or via HTTP where the content type applieatidn/x
app-manifestjson shouldbe used. Offine usage is supported through the use of HTML5 AppCache,
while an API to check the online status is provided.

Example of Usage taken from Mozilla Developer Page [OpenWebApps]

1 {
2 "version": "1.0",
3 "name": "MozillaBall
4 "description": "Exciting Open Web development action!",
5 "icons": {
6 "16": "limg/icon - 16.png",
7 "48": "flimg/icon - 48.png",
8 "128": "fimg/icon -128.png"
9 1}
10 "widget": {
11 "path": "/w idget.html",
12 "width": 100,
13 "height": 200
14}
15 "developer™: {
16 "name": "Mozilla Labs",
17 "url": "http://mozillalabs.com"”
18}
19 "installs_allowed_from": [
20 "https://appstore.m ozillalabs.com”
21],
22 "locales™: {
23 "es™ {
24 "description”: "jAccion abierta emocionante del desarrollo del Web!",
25 "developer": {
26 "url": "http://es.mozillalabs.com/"
27 }
28 h
29 "it": {
30 "description”: "Azione aperta emozionante di sviluppo di fotoricettore!",
31 "developer": {
32 "url": "http://it. mozillalabs.com/"
33 }
34 }
3%}

36 "default_ locale": "en"

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:140f 276

37}

HTML5 AppCache

20/ Q& | ¢al pan apylitahdh Badh®,Svhich allows Web content available on the local device
for off-line usage. Thus, online based applications can be used without internet connection. To add
AppCache suppbrto a Website, a specific manifest file must be provided on a server that must be
referenced from each HTML page of the whole application. The manifest defines which parts can be
online and which must be available offline. In additianfallback can berpvided for the files only
accessible when online.

Example of Usage HTML5 AppCache [AppCache]

1 CACHE MANIFEST
2 NETWORK:

3 /online.cgi

4 CACHE:

5 /offline.css

6 /offline.js

7 [offline.jpg

8 FALLBACK:

9 /fallback.html

W3C Widgets

The W3C Web Agppations Working Group started to work on Widget specifications
[W3CWidgetFamily], small packaged and install&#éb applications, back in 2006. Currently the main
specifications relatated to packaging and configuration, APIs, and signing are in @llpkase which
means that the specifications are mainly completed and W3C recommendations are upcoming. A W3C
Widget is bagally ZIP file which containsaly documents like html, css, davaScriptn addition to

media files like pictures. Everything addt needs to be functional must be located in this application
package which ensures diihe capability. For describing the content of the package a manifest file is
contained which contains meta data like author, application description, desired soneees and
signatures.

The bllowing small example describes a Widget with an attached &tleapplication icon, which can be
shown to the user by the Widget runtime, and a start file, which is used by the Widget runtime to
execute the application.

Exanple of Usage W3C Widget configuration file

1 <widget xmIns="http://www.w3.org/ns/widgets">
2 <name>Hello World Widget</name>

3 <content src="index.html"/>

4 <icon src="icon.png"/>

5 </widget>

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:150f276

Additional specifications of the W3C Widget famdescribing API access to the applications meta data,
how to update widgets over HTTP, and how to sign and validate the origin of Widgets.

Opera Widgets

The Opera Widget [OperaWidgets] specification has slight differences compared to the W3C one. The
configuration file contains information about the author, the application, potential icons and security
related requirements while the packaging is also a ZIPdilangingthe extension from .zip to .wgt.
However, Opera claims that they will support W3C §¥id if the specifications are final. In addition to
accessinghe configuration documents medata, the Opera APIs providbasic application live cycle
management, e.g., allow applications to react on events like "gone to background" or "gone to
foregrourd”. The following example shows the same semaragthe W3C description.

Example of Usage W3C Widget configuration file

1 <?xml version="1.0' encoding="UTF - 87>
2 <widget>

3 <widgetname>Hello World Widget</widgetname>
4 <icon>icon.png</icon>

5 </wi dget>

WAC Widgets

Widgets as specified in the Wholesale Application Community are compliant to W3C Widgets with
additions related to security and privacy. For exam##&\C defines a policy system to protect access to
device features and user data whichust be declared in the Widget configuration document and
evaluated during installation of the Widget.

Recommendations from state of the art

W3C Widget gecifications describelifferent parts around packaging and handling Web applications.
This includes pekaging, signing and the definition of APIs widohall also relevant fowebinos Alsq

these specifications are in a closely to final stage and will be W3C recommendations soon and the
industry is adapting it (e.g., WAC and Opera). Telsinosshouldbase its application definition on the

W3C Widget specifications and extend them in order to meet additional webinos requirements like
distributed application design and exposing functions as service.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:160f 276

Extensions

Extensions in webinos provide access mique device features as stated in requirement @ARBFHG
002 and described in the use case W@ETA3004 "Embedding Proprietary Extensions".

In order to enable third party developers to build and use extensiarssib system to handle extensions
has tobe established.

In the browser space there are several solutions available, which we can leverage from. However, there
is a fine distinction between browser phigs (e.g., Adobe Flash) and extensionstada (e.g., Firebug).
Whereas plugns add supportdr alternative content types to the rendering engifferhich can be
embedded into a Wb application), extensions modify or add to existing functionality of the browser.
From a generic stand poirthree distinctive parts have to be specified for the extendhandling:

1. Application APIs for accessing extensions inside a webinos application,

2. Predefined interfaces for integrating the extension into the webinos runtime (e.g., initialize
function of the extension, mapping of extension methods/attributes ttavacript
methods/attributes)

3. Data schemsfor providing metadata about the extension (e.g., name, supported platforms)

Furthermore we can distinguish extensions in webinosthgir "user group”. There are on the one hand
platform specific extensions, whi@re available to all applications executed on the device and on the
other hand there are extensions which can be coupiéti a specific application.

The platform specific model is used in the general browser-plugpncept. Once the pluig is installed
on the device, the plugn will be usible by all Web applicatios, which embed an object mapped to the
specific MIMEType of the plugn.

The concept of application specific extensions has been applied in HP web@$ Péawglopment Kit
(PDK) [HHPDK]. Asimilar approach can be found in Chrome extensions, where an extension can embed
a NPAPI plutm [ChromeNPAPI].

State-of-the-Art extensions and plug -ins in the browser environment

In the stateof-art analysis we are going to evaluate different solutif@rsextensions in webinos such as
browserplugin (NPAPI), browser extensions (Chrome extensions)JamdScripengine adeons and
provide a recommendation, which solution shall be incorporated into the webinos runtime.

Plug-in standards

The Netscape PiHn API (NPAPI) has been adopted by all major browser platfa@nging from
Webkit browsers (Safari, Chrome) to Firefox and Opera. MS Internet Explorer does not support NPAPI in
favour of ActiveX.

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:17of 276

Plugin are executed directly on the underlying operatirsystem. NPAPI phig are browser
independent butrely heavilyon the operating systemsespecially for 2D and 3D graphical output or
audio output. For each operating system the plaogheeds to be customized and compiled. However,
there are a few framewrks such as [FireBreath] or [Luce] available for simplifying the -ptasrm
development of NPAPI plugs.

In order to providea richer interaction between a @b application and a NPAPI pling the NPAPI
addition "npruntime" was introduced. npruntimbas been adopted by all major platforms as well.
[npruntime]

Google proposed an extension to NPAPI called PEPPER (or PPAPI) to reduce the dependencies between
the plugin and the operating system. Currently PPAPI is only supported by Chrome [PPAPR Mozil
stated that they are not interested in working on PPAPI at the moment-jopagpi].

The unlimited and direct access to the operating system for-pisigaises many security considerations,

but is nevertheless an iportant factor to build unique Wb appications and enabling the access to
unique device features. To overcome the security concerns about NB8&dle introduced the Google
Native Client project (NaCl) to execute native code in a sandboxed environment and prohibits the access
to all hardwareresources (e.qg. fileystem).

Due to the lack of support for PEPPER in different browser runtime and the limited usability of NaCl we
are going to focus our analysis on ping on NPAPI.

Using a NPAPI plug-in

FromaWsSo I LILJX AOF GA2Y RS Gshge bdSNRg is fald NiEnhléS Tha foldwing
lines of code describe how an app developer checks if aipltay given MIMEType is already instiad
on the device and how the &b application can interact with the pltig afterwards.

1if (navi gator.mimeTypes[application/webinos - extension - x1"] &&

2 navigator.mimeTypes["application/webinos - extension - x1"].enabledPlugin != null){
3 document.write('<embed type="application/webinos - extension - x1">");

4 var embed = document.embeds][0];

5 embe d.nativeMethod();

6 alert(embed.nativeProperty);

7 embed.nativeProperty.anotherNativeMethod();

8

Building a NPAPI plug -in

The NPAPI standard mandates the developer to embed methods inside thangluginteraction with
the browser, as described the following document [npagpluginside-api]. These methods include the
initialization (NP_lInitialize), terminiation (NPP_Destroy) of the -plugs well as receiving information
about the supported MIMHYypes (NP_GetMIMEDescription) and version ofalbein (NPP_GetValue).
NPP_GetValue also provides meckanito handle requests from the &4 application.

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:180f 276

As described in [npafirowserside-api] and [npruntime] the browser itselfias to embed several
methods in order to support NPAPI plirg. The ARIXxposed by the browser tilie plug-in incorporates
methods to invokelavaScripfunctions of aweb application (NPN_Invoke), to allocate memory of the
browser mem space (NPN_MemAlloc) or to receive information about the browser engine
(NPN_GetValue).

Extensions

There are no croskrowser extension standards available. Each browser engine provides a different set
of functionality for its extensions.

Firefox provides for their addns aefficientinterface called jxytpes to invoke native libraries without
the need to integrate an extensions into Mozilla's XPCOM architecture. Tygpgs is detailed in the

following section. The ieraction possibility between a ¥ application and the extension are fairly
limited and is possible using events.

Extensionsrni Chrome are a zipped bundle of files (HTML, G&&Scriptimages). Extensions are
essentially VEb pages with access to all the APIs that the browser providé¥eb pages. They can
interact with Web pages or servers using content scripts or crasgin XMLHttpRequests. Additionally
extensions can also interact programmatically with browser features such as bookmarks and tabs.

However, there are no direct mechanisms available for extensions tdaalScripfunctions of aweb
page or vice versa. JSfitions can be invoked using DOM manipulation.

Although there is no API provided to interact with the underlying operating system, NPARhplzan
be part of zipped bundle.

A prototype chrome extensions for webinos built with the webinos discovery-ipiiginderlines the
weakness in communicating between the wapp and the extension.

Direct JavaScript additions

TheJavaScripengine plays a crucial role in the webinos runtime. For that we are going to analyze two
projects, which propose methods to aceethe native functions outside of thiavaScripeéngine. These

two projects are adebns in Node.js [node.js] and as already mentionectypes for Firefox extensions

[js-ctypes].

js-cytpes

js-cytpes is an interface for aduhs inFirefoxrunning inside the chrome. The addn cannot interact

with scripts of aVebapplication.

js-ctypes is a slim interface to call native libraries stored on the hosting device. It enables the access to
these libraries, but does not provide any methods to store or instalifggim specific binaries. The
following code snippet illustrates how-¢ytpes can be used by a developer to open the native message
box on a Windows system.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:190f 276

1 /* importing the js - ctype library */

2 Components.utils.import("resource://gre/modules/ctypes. json");

3/*TODO */

4 var lib = ctypes.open("C: \'\ WINDOWS system32 \\ user32.dIl");

5 /* Declare the signature of the function we are going to call */

6 var msgBox = lib.declare("MessageBoxW", ctypes.winapi_abi, ctypes.int32_t,
ctypes.int32_t,ctypes.jsc har.ptr, ctypes.jschar.ptr,ctypes.int32_t);

7 var MB_OK = 3;

8 /* triggering the previous declared function*/

9 var ret = msgBox(0, "Hello world", "title”, MB_OK);
10 lib.close();

[usingjs-ctypes]

node.js addons

Node.js is a servegide JavaScripenvironment that uses an asynchronous evelniven model. It is
based on Google'3avaScripengine V8. Adans for node.js are dynamically linked shared objects and
provide glue to C and C++ libraries [node.js].

From an application developer perspectiveethisage of an addn in Node.js is straight forward as
illustrated in the following code snippet.

1 var extension = require(./extension);

2 extension.doSomething();

The development of an adoin in node.js involves knowledge of numerous libraries:
1. V8Jav&criptlibrary for creating objects, calling functions etc

2. libev, a C event loop library, if there is need to wait for a file descriptor to become readable,
wait for a timer, or wait for a signal to received one will need to interface with libev. Thét is,
you perform any I/O, libev will need to be used. Node uses the EV_DEFAULT event loop.

3. libeio, a C thread pool library for executing blocking POSIX system calls asynchronously.

All Node adebns must export a function called init with the following sigmat

1 extern 'C' void init (Handle<Object> target)

Mapping requirements to technical solutions and Recommendation for the webinos runtime

Table X compares the different solutions with the relevant requirement developed in work package 2.
The table provids an overview how the different solutions fulfil the relevant requirements.

NPAPI js-ctypes Node.js Addons

(CAPDWBFHG002) |Designed to add support fl|Enables thi|[Enables tb develope

ﬁweblnos

D3.1: Webinos phase | architecture and components

FP7ICT-20095 257103

page:200f 276

The webinos runtim
SHOULDallow acces
to non-webinos APIs {

additional MIMEtypes for the
rendering engine. Pluip i
executed on the OS level.

developer to cal
native librarie
within JavaScrip

to execute native cog
on the OS level. (Ad
on is statically linkeg

device features supports graphical output insidg|No graphical outpyNo graphic outpy
web-application. inside the weRgjinside the weH

application application possible.
supported.

(PSDWRISMB202)

The webinos runtime

MUST ensure that ali .

application does e Not supported. Mechanisms f|Not supported|Not supported

PP (dis)allowing to load plugn need§Mechanisms neg|Mechanisms need

access device featurg
extensions anaontent
other than thos¢
associated to it.

to be integrated

to be integrated

be integrated

(CAPDEVFHG100)
Access to @source ol

Not supported. Addition would
required. Hard to enable sin
NPAPI is tightly coupled to t

Partially supportec
Server module (¢
Node.js could be us¢
to make extensior

remote devicesSHAL Web application DO.M event|Not supported remotely available
. What about the graphical outpu Middleware fo
be available . .
What about the graphical outpl exposing the daf
when remotely accessl? needs to b
developed.
It SHALLbe possible t(|Partially fulfilled. For applicatig
define metapackage||specific extensions, the plg ig . .
. P g. P . 0 Not integrated if
containing a collectigjpart of the application packa Not supported

of applicatons and/o|
extensions.

and could be described in t
packages/application manifest

the system yet

Extensions SHALL be
packaged in a way th
is as similar as possil
to applications.

NPAPI is one binary file. Meta d
about a NPAPI plug such a
name, version, description
stored in the binary itself.

No package syste
defined

Each node.js addn is
described by
manifest file in JSC
syntax. Adebns are
not packaged, but a
stored in a separal
folder

Extensions SHALL be
treated in a way that |
similar and consistel

Partially fulfilled: Plugn s
embedded object in HTML 4

Extension API is us
in the same way as tf

ﬁwebmos

D3.1: Webinos phase | architecture and components

FP7ICT-20095 257103

page:210f276

with standard devic|
features.

provides a scriptable interface.

regular APIs

An Extension thi
contains platform
specific codeMUSTbe
associated with th
supported platform(s)

Must be specified in the metadg
description of the application

JavaScript code i

(O] specifi
Platform
association neeq

to be integrated

Must be specified i

the metadatd
description of th¢
application

For local usage a solution based on NPAPI is the most compelling one. It's widely supported in browser
runtimesand supports graphical output on the device. The graphical output could be relevant for games

(one of the reasons, why HP/Palm introduced the webOS PDK). A remote access to a NRABbpldg
be achieved, but would be limited to its scripting interface

Security aspects

Security aspects are detailedDeliverable3.5

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:220f 276

Authentication

User authenticity is the property granting that the user who wishes to access the system is whom he
declared to be.

Verifying the user identity is often the first stegrfgranting other security properties, like authorization
(what the user can do) and access control (what resources the user can access).

The webinos framework aims to grant authentication property in a-@isendly fashion, hiding to the
user and to theapplication developer most of the more complicated aspects of the authentication
mechanisms.

What's in scope
Authentication topic involves:

e Authentication to the personal zone (user authentication with the personal zone hub).

e Authentication outside the pmonal zone (user authentication with the service provider).
Preliminary analysis of problems and possible solutions, more analysis is deferred to phase 2

e Personal zone identity data management (where the user credentials are stored, how are used,
how aresynchronized with personal zone proxies).

What's out of scope
Anonymous authentication methods (e.g. group signature, direct anonymous attestation, ldemix) and
identity based encryption methods are deferred to phase 2.

Review of State of the Art

OpenID

OpenlD is a user centric, decentralized authentication protocol udilety technologies allowing single
sign on. An OpenID provider can do the authentication of a user for some service and the service does
not have to store identity or credential information

OpenID uses standard HTTP(S) requests and responses. Protocol extensions exist for example for
attribute exchange. The identifier used is either a HTTP(S) URI or an XRI (Extensible Resource Identifier)

Oauth

It allows a resource owner to grant a clieadcess without giving away its credentials for the resource.
OAuth usesVebtechnology (HTTP(S)) to give fine grained access.

The client requests authorization from the resource owner. The authorization request can be made
directly to the resource owner,ropreferably indirectly via an intermediary such as an authorization

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:230f 276

server.

The client receives an authorization grant and requests an access token by authenticating with the
authorization server using its client credentials and presenting the autharizagiant. If the client
credentials and the authorization grant are valid, the authentication server issues an access token.

The client requests the protected resource from the resource server and authenticates by presenting
the access token.

If the accessoken is valid, the resource server provides access to the resource.

WeblID - Web Identification and Discovery

WeblDis an early draft by W3C whichtemds to define how to perform user authentication on the Web

using X.509 certificates, TLS and URIs. The user agent (UA) is associated to the user by a URI. Both
endpoints use TLS to exchange their X.509 certificates for authentication. At the momemptitclear

if WebID will evolve to a standard, but if so, it would be quite interesting for webinos as WebID relies on
widely used technologies.

Liberty Alliance / Kantara

Liberty alliance is a consortium for developing a distributed identity managesystém. It includes an
Identity Federation Framework (IBF), an ldentity Web Service Framework-\WIBF) and Identity
Services Interface Specifications-88). |IBFF enables identity federation and management and it is
designed to work with heterogeneasiplatforms and with all types of network devices\WSF provides

a framework for creating, discovering, and consuming interoperable identity servic&dSlare a
collection of specifications for interoperable services to be build on top-¥8F-.

Thework of the Liberty Alliance is transitioning to the Kantara Initiative.

The Alliance adopts and extends industry standards, rather than atiagqpo develop similar
specifications.

ID-FF Liberty architecture needs an Identity Provider (IdP) and usesprtitd€ol to exchange messages
between IdP and Service Provider to authenticate the User Agent.

IDWSF is a foundational layer that utilizes theHP and provides services. The Discovery Service
determines where the needed resources are located (e.g. atsebutes). The Interaction Service allows

an IdP to interact with the owner of the resource that it is exposing. The Data Services supports the
storage and update of specific data attributes regarding a user.

ID-SIS provides specifications for interopble services (e.g. Géaocation Service, Personal Profile
Service Specification, Employee Profile Service Specification, Contact Book Service Specification).

Shibboleth / SAML

It's an open source implementation of SAML 2.0 specifications. It providesugnentication and
authorization infrastructure to allow federatetlVeb single sign on and attribute exchange. A user
authenticates with his organizational credentials. The organization (or identity provider) passes the
minimal identity information necessgto the service manager to enable an authorization decision.

http://dev.webinos.org/redmine/projects/wp3-1/wiki/Background_-_Authentication#WebID

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:240f 276

SAML 2.0 is an XMiased open standard for exchanging authentication and authorization data between
an identity provider and a service provider. Its specifications recommend SSL 3.0 or Tbs 1.0 f
transportlevel security; XML Signature and XML Encryption for medseagke security. SAML 2.0
permits direct use of XML Encryption in various places, including an <EncryptedID> element that can
replace the usual <NamelD> element.

SAML 2.0 allows forrbkitrary mappings between any two formats by using the <NamelDPolicy> element
to describe the properties of the identifier to be returned.

Kerberos

Kerberos is a mutual client/server authentication system designed to establish sessions and support the
sealre transfer of data. Kerberos can be used as a single sign on mechanism.

It requires a trusted third party and uses tickets and ticket granting tickets to allow it to scale to multiple
services without repeated user authentication. Kerberos does not regthie use of asymmetric
cryptography and uses time stamps for validity periods.

Identity mechanism of XMPP

XMPP is an XML based protocol for nesattime messaging, presence and requessponse services
for confidential and integral message exchang&T

The XMPP identifier (e.g. node@domain/resource) has as mandatory field only the domain identifier
and is used to address an endpoint. To authenticate an endpoint SASL is used enabling a server to offer
multiple authentication methods from which a cliecan choose.

Identity Metasystem

"The Identity Metasystem is an interoperable architecture for digital identity that enables people to
have and employ a collection of digital identities based on multiple underlying technologies,
implementations, and praders."

Three different parties participate in the Metasystem:

e Identity Providers which issue digital identities.

¢ Relying Partieswhich require identities.

e Subjects which are the individuals and other entities about whom claims are made.
Five key areasompose the Identity Metasystem:

e Identity representation using the data elements carried in Information Cards (called claims).
Claims are carried in security tokens in the same way adopted\adrservice security (called
WS_Security, an extension to SQaRpply security tdVebservices).

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:250f 276

e A negotiation process among identity providers, relying parties, and subjects. Negotiation occurs
using WSSecurityPolicy (an extension of V88curity) statements exchanged using -WS
MetadataExchange (a Web Services peolospecification). Identity Metasystem is flexible
enough to carry various format of token and different kinds of claims needed for a digital
identity interaction

e An encapsulating protocol to obtain claims and requirements. TheTk& (an extension of
WS Security) and W&ederation (an Identity Federation specification) protocols are used to
carry requests for security tokens and responses containing those tokens.

e A means to bridge technology and organizational boundaries using claims transformation.
Searity Token Services (STSs) as defined ifTW& (an extension of WSecurity) are used to
transform claim contents and formats.

e A consistent user experience across multiple contexts, technologies, and operators. This is
achieved via ldentity Selectorieht software such as Windows CardSpace representing digital
identities owned by users as visual Information Cards.

Firefox account manager

The Account Manager allows users to create new accounts with optional randomly generated
passwords, and log into drout of them with a click.

The Account Manager specification proposes two changes to Web sites:

1. The browser needs to know how to register, sign in, and sign out. A static JSON document
describes what methods the site supports and how they should be &@kcu

2. The browser needs a way to check which user (if any) is currently signed in. To do this the site
has to set an HTTP header or to supply a URL the browser will ping.

Recommendations from state of the art

SAML 2.0 standard could be useful to exchangghentication data outside the personal zone, to log

into external services. It can also be used to login to the personal zone (to be more precise to login to
the personal zone hub) and to synchronize authentication data among the personal zone hub and the
personal zone proxies.

An account manager similar to the Firefox one could be hosted on the personal zone hub (with a copy
into the personal zone proxies) to implement a more digsEndly authentication mechanism.

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:26 of 276

Discovery

Discovery is a procedure foetrieving addressing information of a device or serviedgher through
local or remote networking access mechanism.

The discovery mechanism varies on different discovery protocol adopted. Some technologies are not
involved in discovery mechanism dirggtirather they gather discovery information from existing
discovery protocol, e.g. Serverless XMPP uses ZeroConf as its underlying discovery protocol and XMPP
Core uses DNS resolve to gather server information.

The webinos discovery framework aims to defia set of interfaces that hide the complexity of
internetworking technologies for both third party developers affeébdevelopers.

What's in scope

Webinos discovery mechanism investigatiee following issues:

e Local Discovery that are based on a varadtiocal discovery protocols, e.g. UPnP, ZeroConf, BT,
WiFi, and USB.

e Remote Discovery that enables remote access to devices or services. Technologies investigated
include XMPP and its extensions, Web Introducer and Web Finger. Distributed Hash Taple (DHT
has been investigated, but deeper analysis is postponed to Phase Il (see below)

What's out of scope

DHT is an optional P2P discovery technology for webinos. It provides a better flexibility to discover.
However, in comparison, XMPP is capable of progidiinctions for storing information about friends,
authenticating system, finding services. It also defines Protocol format required for webinos architecture
communication. In Phase |, we focus on XMPP technology. Further investigations on DHT isaopat in s
of this phase of work.

Focus will be on Bluetooth and USB devices for local discovery in Phase I, this will give an understanding
on local discovery aspect. Firewire and Zigbee will be considered in Phase I, since they are not
widespread local commuecationtechnologies.n respect to the target core of webinos, their analysis is
deferred.

Review of State of the Art - Local Discovery

Zeroconf

Zeroconf is set of technologies to address following issues:

e Address configuration (assigned address usiHEP or hostonfigured link local address)

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:27of 276

¢ Resolving host name to IP Address using Multicast DNS

e Description of services supported on device and way to communicate with the device, using
DNSSD Service Discovery

The multicast DNS/DNSD in Zeroconf makese of following commands to browse, find address and
named instances.

e Register (Services)
e Browse (Named instances)
¢ Resolve (Address and ports)
It fetches following information at end of DNS service discovery:

e Pointer record - PTR : mapping address to nam which is of form
<servicename>.<transport_protocol>.domain>(e.g. operator._http._udp.local, where operator is
a unique usewisible name, no other node can have same name, _http._udp is protocol, and
local is the domain)

e Service locator SRV record (htisame + port) (e.g. operator.local port 6313). Specifies service
location for fetching information about the protocol. This is also used in XMPP/SIP messages.

e Text Record TXT (e.g. pdf:application/postscript).

Host offering publishes instances, serviogd, protocol information, domain name and config
parameters.

Seeimplementation sectiorfor more details on ZeroConf examples and message format.

Depending on the messages, they are sent as unicast or multicast query. New services announce about
their presence Addresses are resolvdibfore sending packst if it fails to find devices, it updates other
devices too about the service unavailability.

In wide area networki.e.,if domain is specified such as as.org it will fetch the services available in
this domain. This could solve the problem of service discovery outside local domain but imposes a
domain registration for eachser, whichin geneal is not practical.

UPNnP

UPNP is a ISO standard for home network that supports automatic configuratigheiretwork should

be self configurable. It is a protocol based approach and, differently from older PnP technologies, no
device drivers are inveed. UPnP specification is based the following protocols HTTP, TCP/UDP,
SOAP, and SSDP.

Communication is between controllers/control points and controlled services. One or more services are
combined to form a deice. Controlled devices handiequestsfrom a control point.

http://dev.webinos.org/redmine/wiki/wp3-1/Spec_-_Discovery#Implementation-Architecture

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:280f 276

UPNP allows device to advertise its services to control points and allawsntrol point to search for
devices. Results of discovery are device type, device unique identifier, and URL for obtaining device
description. Search anddweertise are multicast messages, while request/response between control
point and device are unicast messages. If IP address or services are chantiedrésponsibility othe

device to advertise the changed IP address. Each device, embedded daViserane offered by each
device should be advertised via multicast. Because of the nature of the UDP, advertisement message
are sent multiple times and are based on the value specified in Cache Control. Cache controls the expiry
time of advertisement.

In UPNP, discovery is done using SSDP (Simpler Service Discovery Protocol), it is based on HTTP protocol
1.1. It is a simple protocol which comprises of start line and list of message headers.

SSDP Start line:
e NOTIFY *HTTP/1.1 \r\n
e MSEARCH*HTTP/1.1 \r\n
e HTTP/1.12000K \r\n

Bluetooth

The process for Bluetooth service discovery involves two stapguiry of all nearby devices, and
connecton to each of those devices in order to search for the requested services.

HCI inquiry can be used to detect neartlevices. It provides a command interface to the baseband
controller and link manager, and access to hardware status and control registers. Essentially this
interface provides a uniform method of accessing the Bluetooth baseband capabilities. The HCI exist
acrossthree sections, the Host Transport Layer Host Controller. Each of the sections has a different
role to play in the HCI system.

In order to search service)e bluetooth stack provides Service Discovery Protocol (SDP). SDP enables
network devces, applications, and services to seek out and find other complementary network devices,
applications, and services needed to properly complete specified tasks. The attributes of a service
include the type or class of service offered and the mechanispraiocol information needed to utilize

the service.

SDP involves communication between a SDP server and a SDP client. The server maintains a list of
service records that describe the characteristics of services associated with the server. Each service
recard contains information about a single service. A client may retrieve information from a service
record maintained by the SDP server by issuing a SDP request. If the client, or an application associated
with the client, decides to use a service, it musenm separate connection to the service provider in

order to utilize the service. SDP provides a mechanism for discovering services and their attributes, but
it does not provide a mechanism for utilizing those services.

Normally, a SDP client searches $&rvices based on some desired characteristics of the services.
However, there are times when it is desirable to discover which types of services are described by an
SDP server's service records without any a priori information about the services. Tdgsgpad looking

for any offered services is called browsing.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:290f 276

Review of State of the Art - Remote Discovery

XMPP (Extensible Messaging and Presence Protocol)

XMPP architecture and messaging protocol is quite simple and is primarily aselieat technadgy.

The established connection between client and server allows searching for friends, resources, items and
services.Resourcesould be user devicestems are the devices which are not IP capable (e.g USB).
More description about resources, items andhdees is included in the protocol definition section.

XMPP core is defined in RFC 6120, it desctiesconnection between XMPP client and server over
public IP. It involves stream message exchange, feature and mechanism negotiation, security (TLS and
SASL), presence, and message exchange. Discovery mechanism will rely on XMPP exter¥30, tsEP
search services, XBR74 for Serverless messaging (Discovery is based on ZeroConf, once device are
resolved they can use XMPP). At different layersi@binos system different XMPP extensions can be

used and if particular exchange of message is required to support it is easy to implement extension
using XMPP. More details about nodes and items is covenaaincol definition section

XMPP in case of public IP uses DNS SRV record to fetch information about the domain. At transport layer
it uses TLS (Transport Layer Security) and allmage of different SASluthentication mechanism to
authenticate uses. Different XMPP servelimpose different mechanisms and different compression
technologies to communicate between client and server.

Distributed Hash Tables (DHT)

DHT allows sharing of information between pgeJses wishing to exchange informatiamse ahash file

and a filename. The filename becomdbe key and is searchable by entities connected to same
bootstrap and to same port. One entity acts as server that holds information about keys and responds
backto clients about the node holding key. All nodes connected exchange information about nodes
available i.e. which nodes are online and are checked for their presence from time to time.

There are different DHT Protocols such as Chord, Tapestry, Kadefitih,differ in how nodes are
found. DHT is relevant to webinos and could be used for remote discovery. The main issue is to find
relevant keg; we should use a layer on top to do searching of all remote nodes with appropriate search
guery. For example, searing for George specific device, information is stored in forma ddey.
Information can be only obtained if user searching gives correct names based on which key was
generated. Ithe key is generated in form of George+Bluetooth, searching for Georgeteblin will not

get result. A layer on top is required to hanttese permutations to search fahe proper key.

If no adjacent clients are theret is not cleahow it communicates with remote nodes. Other issue is
restrictive usage to allow only certaidevices that matches user device should be accessible. For
example: if devices are available in DHT based network stopping George device to be discoverable by
Alice device is a problem. George device to be searchable by only George's device, is aoidcheay

to do it needs to be defined in order to use DHT in secure way.

Major problem in DHT are change in node information becomes difficult to address a node, node acting
as bootstrap needs to be available all the time, and controlling namespace fdwethgenerated. In

http://dev.webinos.org/redmine/wiki/wp3-1/Spec_-_Discovery#Formal-Specification

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:300f276

webinos context, DHT could be used to find peers which provides information of services available and
will be further investigated in Phase II.

Web Finger

The WebFinger is protocol inspired by the old Name Finger protocol defingF@ 742]The Name
Finger protocol enables the possibility to get information about a given user. WebFinger is an evolution
that instead of using a direct TCP connection, it uses HRFE2616]XRDand Web Host Metadata
[IETF, drafhammerhostmetal6]to provide a desriptor of a single user. The protocol consists of two
parts:

1. One URI schemes to identify user accounts, e.g. acct;joe@example.com

2. Asimple protocol for resolving a user account into an extensible descriptor formated as a XRD
resource.

The protocol is noan official standard but the work has been driven by several parties inviadhesdity
Commons whichis a community of groups working on developing the identity and social layer of the
Web.

Web Introducer

It addresses finding services that user has registered\M@b. For example, it allows user to connect
with his choice of photo sharing websiteall the information is present with registrar and it provides
information for communication of services.

It is quiterelevant for webinos to allow addressability of different resources that are available over the
Webfor a particular user and could be part of personal hub.

Recommendations from state of the art

Local Discovery

The diversity of internetworking technolag for local discovery introduces a variety of discovery
protocols and implementations. Our literature review and hamddemo work recommend the use of
SSDP defined in UPnP and ZeroConf for local IP network discovery due to their efficiency and popularity
For other devices that don't support UPnP and ZeroConf, specific discovery mechanisms shall apply, e.g.
standard Bluetooth HCI inquiry and SDP for Bluetooth device discovery.

Remote Discovery

XMPP is a relevant technology as it supports finding frietitdsr resources, items and services. It
supports publish and subscribe mechanism, event mechanism, and also serverless messaging for local
area network.

http://tools.ietf.org/html/rfc742
http://tools.ietf.org/html/rfc2616
http://docs.oasis-open.org/xri/xrd/v1.0/os/xrd-1.0-os.html
http://tools.ietf.org/html/draft-hammer-hostmeta-16
http://www.idcommons.net/
http://www.idcommons.net/

ﬁweblnos

FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:310f276

The webinogplatform could utilize XMPP core and its extensions. XMPP core specificatios dglace
connectivity and establishing secure communication. XMPP is mostly considered as chatting protocol
but for webinosplatform, XMPP specification/extension considered are service discovery, getting node
information, and resource information.

Use webfingera discovery Personal Zone Hubs (PZH). The PZH will be identified by a URI and this will
introduce another personal address. However by using webfinger it will be possible to leverage on
existing identities like an-mail address, Facebook identity or Gaoddl which can be obtained from

many different sources like the local contact book, social graph or from business cards. The end user
does not need to be aware of the PZH URI.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:320f 276

Messaging

The webinos architecture features a powerful and extensible mesgdgimework that allows to easily
exchange arbitrary data, in terms e¥ents among addressablentities(e.g., applications, services), also
completely hiding away any complexity related to the different underlying interconnect technologies.

It is basedn a flexible, yet rigorously defined, event description that is both independent of the actual
payload data format and serialization format for data transmission. This basically means that custom
eventbased protocols can be easily defined and implemerded that it is possible to choose the
"encoding" that better suits the involved interconnect technology.

Despite the swisarmy knifelike nature of this system, at a basic level the handling of events reduces to
just a few simple concepts from the devplr perspective: generating and sending events, or
forwarding them, and registering listeners for incoming events. More advanced features are also
offered, including, but not limited to, the possibility to send/forward events to multiple destinations at
once, to associate event listeners to a particular event source, destination and/or type, to specify a time
frame for event delivery, to ask for delivery notifications and to control/monitor the storing and
forwarding of events that cannot be immediately dekred.

Furthermore, two more specific protocols are defined on top of this low level generic framework, one
regarding event delivery notifications and another describing RPC functionality needed to implement
webinos services.

What's in scope

e Event descption: what a generic event looks like from the developer's point of view, which
metadata is compulsorily or optionally associated to each event;

e Event processing: how generic event metadata influences the sending, caching, storing,
forwarding and listenig to events;

e Application, device and networklevel event routing: how the event handling mechanism
interfaces to other parts of the webinos architecture to allow event exchange;

e Event delivery notifications and RPC protocols: what they are, how they, wdrlt their
relationship with the generic event handling mechanism is.

What's out of scope

e Interconnect technologylependent details of data transmission over the network;
o Discovery and binding of addressable entities;

e Definition of speciapurpose eventased protocols;

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:330f276

e Uservisible notifications and user interaction.

Review of State of the Art

TheXMPPcore protocol and some of its extensions (also knowXBEBkhave been analyzed as today's
state of the art technology for generalized routing of data.

Formerly known as Jabber, XMPP is an open, decentralized and extensible protocol fizzahtare
XML data exchange; it is backed and formalized by IETS @@R€EB923, 4854, 4979, 5122) and further
developed by thexXMPP Standards Foundatjomith several mature implementations already available.

Our XMPP_for Event handlingtate of the art analysis documents clearly outlines how it would be
possible to satisfy most webinos' functional requirements concerning remote notifications and
messaging by simply adopting XMPP and requiring aifgpeset of XEPs to be supported by the
implementations; furthermore, such a choice would also allow to reuse at least part of the already
existing XMPP servside infrastructure without modifications.

On the other hand, the scope of such analysis istitriimited to the exchange of structured data (i.e.,
events) and does not take into account issues that are of fundamental importance in other functional
areas.

Recommendations from state of the art

Given XMPP's maturity and suitability for applicatiamsnany different contexts, the webinos' event
handling system will borrow a consistent set of concepts, features and technical solutions from such
technology.

Such a strategy should also be of help in defining a bidirectional mapping between the twioltegibs
for interoperability purposes, yet without creating unilateral or mutual interdependencies.

http://xmpp.org/
http://xmpp.org/xmpp-protocols/xmpp-extensions/
http://xmpp.org/
http://dev.webinos.org/redmine/projects/wp3-1/wiki/XMPP_for_Event_handling

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:340f276

Context

The Context area addresses all issues relating to management of contextual information (detection,
acquisition, representation, distributiomtc) as well as all the potential consequent capabilities (such as
content Adaptations and Reasoning) that could enabled by being aware and process this information
within webinos.

Through webinos users will be able to access and use applications that wods afevices allowing

them to have an uninterrupted usage experience. Such a capability will eventually propagate activities,
events and even connections that users maintain to be expressed also through the set of owned devices
too. For example sharing dege of multimedia (photo, photalbum, a playlist) with another person
within the scope of using one application across several devices.

The innovation of the webinos approach in context framework is that it structures the context data that
occur from these activities/events that are performed through connected devices in a way that could
"make sense" and make this information available in a privacy preserving way to support the creation or
context aware application that can provide a better user expegenc

What's in scope

The webinos context framework comprises the followirognts:

e The Context Architecture, outlining the basic component of their interconnections. The
architecture outlines how context data are acquired through context related eventsoitur
in the system and are made available through the system APIs as well as how these activities are
integrated with the overall webinos Privacy architecture (through a policy enforcement point).

e An analysis of how contextual structures are formed witthe context framework and an
outline of some fundamental context structures such as the User context, Device Context,
Application Context context objects.

e An analysis of technologies to implement thStorage and Extensibility Framework for the
ContextModel - where different part of the context model are stored, for example user context
in the cloud, device context in the device and how these are linked among them.

e APIs for Context Access through two basic mechanisms, Querying for Context Data and
Sulscribing to Context Related Events.

Whats out of scope

Currently the following areas are out of the scope of the webinos context framework:
e General data management and storage within webinos.

e User ID management, privacy and security specificaiton witiininos.

¢5)webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:350f276

Review of State of the Art

Context awareness and adaptation constitutes quite an extended area with regards to underlying state
of the art. The following dimensions have been examined within the context awareness activities:

o EU research projestthat deliver relevant specifications/prototypes.

e Existing and emerging standards that can enable context awareness and adaptations
functionality with a focus in representing social activity.

e Underlying technologies, academic research and prototypes apither within or outside of
the consortium.

Recommendations from state of the art
The underlying state of the art particularly from dedicated context projectsreveal some design
patterns when it comes to designing context oriented solutions, spattific

e Context is tightly related with the occurrence of events that signify the presence (or existence)
of a situation.

e Context data refer both to present moment but also to past (or even future) moments. This
means that is is necessary to provide a agw facillity that holds not only current but also
history context data.

e Acquisition, Access or Reasoning of Context Data should take into consideration the User
preferences, empowering the user to control or define these activities.

All the above points dve been taken into consideration in designing and later implementing the
webinos Context Framework.

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:360f 276

Security and Privacy

One of the primary aims of webinos, and of future internet projects in general, is to provide a secure,
privacypreserving interet experience. There are many wdtbcumented problems with security on
Web applications and th&Vebin general, including weak authenticatipplCH1]Land numerous forms

of content injection attack§OWASP1J0 Furthermore, mobile devices contain enormcarsiounts of
private and confidential information, the protection of which is paramount for both business and home
users. The webinos project has many of the same problems and, by creating a\pinedssdevice
application infrastructure, it could be argd that there was an increased potential for harm: attackers
such as the webinos personas EtHa27%Ethar] and FrankigD027#Frankig - could potentially steal
valuable data or the end user's identity on every device they own. Furthermore, webinaosuitiisle
stakeholders with different security requirements. Some of these produce contradictions, for example a
developer- such as the Jimmy persofia027%Jimmy} - may want to find out demographic data and take
advantage of analytics to profile users, whas users such as Helgp027Heler] wish to preserve their
private information. These factors, as well as the diverse number of devices that may be supported by
webinos, means that a sound security architecture is of vital importance to the webinosnsyste

However, the security architecture is also an opportunity to make a significant contribution to the
current stateof-the-art in mobile application security and privacy. By introducing a standardised and
robust security framework, webinos can potentialhicrease security and privacy on the four device
domains simultaneously. Part of this is due to the fundamental webinos vision of creating a standardised
application environment: by providing a unified user interface for making access control decisions,
webinos will significantly increase usability and therefore encourage users to make better (and more
privacyfriendly) security decisions. This is one place in which existing application architectures are
fragmented, as the major mobile operating systemstsias iOS and Android have different security
models, making the experience less familiar and potentially discouraging users from expressing their
privacy preferences. The current systems have also been criticised for having an "all or nothing"
approach, vith Android and iOS requiring that applications are installed with access to all features the
developer asked for, or not installed at all. This has proven unpopular with users, with alternative
Android systems appearing which offer the revocation of leid@s[DEME11). It has also been noted
that many applications request more privileges than they need. This means that users are not as
cautious of applications which request many privileges as they should be. Webinos is well positioned to
provide better s¢utions than the current state of the art.

The webinos security and privacy architecture is fully outlined in delive{&f85) but the essential
functional components of the policy enforcement mechanism are explained in this document.
Implementing a potly enforcement mechanism requires several novel features, including:

1. Support for flexible access control policies referring to all APIs and data sources on the webinos
platform

2. Policies which can refer to credsvice interaction, both inside a webinos 'fgenal zone" and
between users with no prior trust relationship

3. Synchronisation of access control policies between devices within the webinos personal zone

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:370f 276

4. Connecting application requests to privacy policies, so that users can makefoetied
decisionsabout their personal privacy.

The security policy system builds on work from WXA@RAG and BONDIHOND] and is based on the
XACML language and architect{iACML

What's in scope

This document describes the policy architecture for webinos, and coverf®lowing topics:
e Access controls for applications. This includes permissions for:
o Device APIs, such as features, location services and cameras
o Other devices, both inside and outside of the personal zone
o Remote content and services
o Personal profile da
o Other applications on the same device and on other devices
e Policy synchronisation between a users' devices
e Privacy datausage policies and obligations for applications
e Application trust chains and certificates

Details on authentication and user identilganagement are also included in this deliverable in later
sections.

Whats out of scope

The following issues are not included in this document, but are covered either in another deliverable
D03.5 or in the second phase of webinos specification:

¢ Remote mangement of devices and remote policy enforcement (phase 2).

e Implementation details for the protection of applications and the webinos runtime during use
(recommendations in D03.5, further details in phase 2).

o Platform integrity reporting and attestation (spified in D03.2 and discussed in D03.5)
¢ Integration with social networking for more usable policies (phase 2)
e User interface specifications for policy editing and resolution (phase 2 and D03.5)

o Digital rights management and content protection (phase 2).

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:380f 276

e Detailed specifications of privileged applications (D03.5)

Review of State of the Art

There is a great deal of existing work in access control in general and mobile platforms specifically. A
comprehensive summary of related work to security is coverealiverables D02.7, D03.5 and D03.6.

Recommendations from state of the art

The security architecture, much like the rest of the webinos specification, has been designed to reuse as
much existing technology as possible. This is particularly important imise@s creating new designs

and writing new code will introduce new design flaws and vulnerabilities. Many existing solutions have
already undergone extensive testing and will have been patched to fix many outstanding issues.
Therefore, we have built pnarily on the existing WAC specifications and the general XACML
architecture. From the analysis, we can see that these already solve many problems in wehictogas
mediating access to device featurdsut must be modified to support new requirements.

However, we can also improve on WAC designs by implementing features such as privacy policies which
remained underspecified. We propose to take advantage of the work produced by the PrimeLife project
to create usable policies which protect user privacy.

Privileged Apps

The scope of this section is to provide Access Control or Privileged Apps and Services specifications. The
objective of this section is to recommend a security solution for implementation using the Privileged
Apps and Services concept inbhimos project. The use of the concept of Privileged Apps and Services is

an important factor in webinos. A webinos application will be signed with a certificate that is in the
privileged certificate store on the device. Target an application based ongitalBCertificate and there

shall be policies assigned to these applications.

Privileged applications are those apps that request additional capabilities, e.g. access to a location or to
restricted data such as your contacts, vehicle engine details. édthdhese kinds of applications also
require access to special APIs like an automotive or home media app and the access to these APIs has to
be granted by administrator or a privileged user, these applications shall focus on the management of
the webinos untime.

A privilege management creates, stores, and manages the attributes and policies needed to establish
ONRGSNARAEF GKIG OFy 0SS dzaSR G2 RSOARS gKSGKSNI | dza
granted. Access control uses the data made abksldoy authentication, privilege management, and

other information provided by the access request provider, such as the form of access requested to

make an access control decision.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:390f 276

The design principles for the privileged architecture in this section are:

1.) Guarding against threats that access critical data.

2.) Establishing levels of security for data and other resources by using Policies.

3.) Implement dashboard, installer, launcher, and policy manager.

4.) Allow direct control over API access by &fl provider. E.g., a car manufacturer can write engine
monitoring APIs and allow them to access only via the car manufacturer signed applications. Let there
be a signed certificate, Identity and Integrity checks for widget based Apps. Protection anitySesmr

hacks at the runtime and accessing sensitive API's. To support these Cryptographic methods, Encryption
code be used. The Apps are signed and confirmed by the Device Manufacturer when using Sensitive
API's and Critical data, the Monitoring systelnecks and manages that there is no access to critical data
like Engine Diagnose API's and HW data.

5.) The Privileged Apps and Services shall provide information related to Date, Event ID, Event
Description, Username, Parent PID, Policy, Application GroRgason, Custom Token,
Filename/Codebase, Type, Instances, Description, and Certificate.

Two ways of using Privileged Apps and Services in webinos for security purpose:

1.) Enforce access control policies at the Runtime Environment.

2.) An Application wlkh uses system commands and classes which manages the OS services, access
rights, registries, roles based on the users and so on.

State-of-the-Art

In the stateof-art analysis we are going to evaluate different solutions for Privileged Apps and
Services(Boess Control) in webinos such #£3C WAC, AndroidandBONDI

Privileged Application idavaScripand provide a recommendation, whiglelution shall be incorporated
into the webinos runtime.

The working of XACML with Privilege Apps an d Services (Access Control)

The deployment of the XACML access control sySeLwork:

w ! ''aSNJ aSS1a |00Saa G2 a2 eentinBaizydENDy&mentyPBint & dzo Y A
(PEP)) protecting the resource.
w ¢KS t9t F2NX&a | NBljdzSald o6dzaay3a GKS -1/ a[NBI dzS:

action, resource, and other relevant information.

w ¢KS t9t (KSy & BolicR Recisioh RPaint (RIB) tdaSexamings Zhe tequest, retrieves
policies (written in the XACML policy language) that are applicable to this request, and determines
whether access should be granted according to the XACML rules for evaluating policies.

w h&answer (expressed in the XACML response language) is returned to the PEP, which can then allow
or deny access to the requester.

http://dev.w3.org/2009/dap/perms/FeaturePermissions.html
http://public.wholesaleappcommunity.com/redmine/embedded/wac2pubrev/core/widget-security-privacy.html
http://developer.android.com/reference/android/Manifest.permission.html
http://bondi.omtp.org/1.01/security/BONDI_Architecture_and_Security_v1_01.pdf

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:400f276

Policy Language and Enforcement

The implementation of a policy system requires to choose algorithms for reconciling dogflict
policies. It should independently administer multiple policies controlling access to the same
resources.

An efficient way of locating all the policies that are potentially applicable to a given decision.

Authentication and Authorization

Grant securityproperties, like authorization and access control like what resources the user can
access.

The logging of the Authentication to the personal zone (user authentication with the personal
zone hub). The Notification and keeping track of the Personal zonditidend personal zone
proxies.

Running retrieve data in privilege app space.
Updating user credential information such as password, certificates.

Enable access to recorded decisions when the user isn't available in real time.

Authorization and Privileg

Gommon authorization model for all the trust domains.

Common language for expressing security policies.

Support of authorizations at all levels of granularity.

Storing Authorization in a safe and protected place if they are not digitally signed
Identify gplications which have been granted particular privileges.

List of all their webinos applications for the users.

Restrictions of the access control policies on applications from potentially malicious
applications.

Ensuring that only trusted components atewnloaded

Delegate decisions to a trusted third party when appropriate.

Discovery

The access control should check whether the address, devices or services are valid or not.

If service driver is required to be installed for the device, privilege apiplicahould support
the driver.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:410f276

e Device visibility control, device in multicast mode could be passive or active listener.
e Access control to access different file system area and obtain user credentials information.

e Specify a access format.

Context

e Definng Policies to access his (photo, phalbum, a playlist) and other stuffs across other
webinos devices.

e Grant and retrieve the data and the Policies based on Context.
e Storing of device context in file system.
e Review and manage which applications usexgehgranted permissions to, and in what context.

e Policies based on Subjects and Resources

Tasks in the scope of Privilege Apps and Services

The PZP can handle many devices and multipgs So there should be certain level pérmissions
enforced to ona particular user for viewing, editing files, modifying system files. Similarly, there may be
certainWebapps which would try to access the restricted registry files, drivers or at the kernel level.

So theowner of the device can permit privilege® delete files, view private information, or install
unwanted programs.

Most Privileged
When the user or process is able to obtain a higher level of access than an administrator or system
developer intended, possibly by performing keHelel operations

w ! tAckdr thay then be able to exploit this assumption so that unauthorized code is run with the
application's privileges.

w {2YS ASNBAOSA INBX O2yFAIdzZNBR (2 NMzy dzy RSN (iKS
buffer overflow may be used to execute

arbitrary code with privilege elevated to local system.

w !ugeéwhich accesses binary in the file system or Registry can therefore elevate privileges.

wCore dump be performed in case it crashes and then have itself killed by another process.

w /| Mé&hé Fcripts should be identified so that the running of the malicious code on the client side can
be prevented.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:420f 276

Least Privileged
Least Privileged: An application allowainingaccess to resources that normally would have been

protected from an applicatio or user. The application would perform actions but different security
context than intended by the application developer or Administrator.

RBAC- Role Based Access Control

RBAC is an approach to restricting system access to authorized users. The ipesntsgerform

certain operations are assigned to specific roles. The webinos shall provide a RBAC model where the
Privileged Users are assigned particular roles, and through these role assignments acquire the
permissions to perform particular system fuions. Since users are not assigned permissions directly,
but only acquire them through their role (or roles), management of individual user rights becomes a
matter of simply assigning appropriate roles to the user; this simplifies common operationsasuch
adding a user devices, or changing a user's role.

Three primary rules are defined for RBAC:

1. Role assignment: A subject can execute a transaction only if the subject has selected or been assigned
arole.

2. Role authorization: A subject's active raeist be authorized for the subject. This rule ensures that
users can take on only roles for which they are authorized.

3. Transaction authorization: A subject can execute a transaction only if the transaction is authorized for
the subject's active role. Wi rules 1 and 2, this rule ensures that users can execute only transactions
for which they are authorized.

Areas to Consider

e If a subject has roles R1 , R2, ... Rn enabled, can subject X access a given resource using a given
action?

e Is subject X allowetb have role Ri enabled?

e If a subject has roles R1 , R2, ... Rn enabled, does that mean the subject will have permissions
associated with a given role R'? That is, is role R' either equal to or junior to any of
NEfSa wm I wHI XwyK

Access Control Matrix

It would be important for webinos to include the Access Control Matrix it is a useful model for
understanding the behavior and properties of access control systems. This matrix defines the trust
relationships between the control domains and sddimains. Tk implementation of the access control

matrix can be based on a combination of Access Control Lists, permission files, and an enforcement
Sy3aAySs &dzOK & WHOHQa {SOdNAGE alyl3asSNI FyR ! 00S:
defined in theAccess Control Matrix.

ﬁweblnos

D3.1: Webinos phase | architecture and components

FP7ICT-20095 257103

page:

430f276

Types of accesses that are necessary to define the relationships between the objects and subjects in

webinos

1. File Access, which includes the following permissions: Read, Write, and Execute.

2. Message Access, which is necessary becafishe need to control the exchange of messages
between trusted and nottrusted domains and subjects. Message Access includes the following

permissions: Send and Receive.

3. Process Access, which controls the start and termination of processes such aSofiware
Download, including the following permissions: Initiate, and Terminate.

4. Key Accesses. This access type includes Create and Use

Examples showing the Policy Enforcement Point in Mobile Platform and in the

High Level Vehicle Bus Infrastructure

Policy Enforcement Point in Mobile Platform:

Java Applications

Operating System

Policies/Privilege Services

Stacks File, Blob Integrity Checks Authentication = Classes
Access Control . Hashing Permissions Request Assemblies
Sealed Encryption, Data Integrity Hardware Signature
Storage Decryption Registers Attestation Services

Trusted Hardware

The security features and the policies supported by the Mobile device are enabled or enforced in the

Policies and Privilege services layer 6 KA OK SEG Sy Ra&

WE @1 Q&

U{ SOdzNR (i & a

classesAt runtime, the Policies and Privilege services layer decides what policies are to be enforced and
what privileges can be applied when a connection request is made. Based on the domain, device, device
type and whether the domain or device is trusted or-twasted, the Privilege layer can enforce
application level authentication, encryption of the session and any other specific access policies. For the

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:440f 276

Information regarding the services that the decision is to be are available in the manifested files and are
described in hash of Policy files that are stored securely.

The Privilege services layer provides security services:

e The Privilege Monitor stores event logs in its registers for auditing purposes.

e The Privilege Apps and services will provide cryptogcapéivices, to include asymmetric key
generation, digital signatures, hashing, and encryption.

e ¢KS 1Sé& dzaSR RdzZNAy3a | 00Saa O2yiNBt OFYy
Key Storage capabilities.

e The runtime Privilege Apps auditifignctions will make full use of the registers, Secure Data
Storage, and Session Storage capabilities.

S a

(@]}
(p))
(@

Example for Policy Enforcement Point in High Level Vehicle Bus Infrastructure for IVI:

Head Unit

Webinos Run Time

Vehicle
PEP AP API API API
OS Level
MC.)ST Driver Driver Driver
Driver
CD
Changer Telephone
CAN Common Comfort CAN

Crash Air b o Gate Way . : .
sensors IFbag ngine Climate Window Wiper

This example illustrates the Policy Enforcement Point in a High Level Vehicle Bus Infrastructure. The in

car headunit is basically an-tmr PC connected to the infotainment bus. All infotainment relevant

control units such as the cd chaarg telephone, gps module are connected to this bus and can
communicate with each other on this bus by sending messages. At BMW MOST driver is being used as
the infotainment bus (for more information on MOST Bus see this link:
http://en.wikipedia.org/wiki/MOST BusThis infotainment bus is connected to the Common Gateway

(CGW). To this central gateway all other vehicle buses (e.g., High speed CAN or comfort CAN) are
connected as well. At the CGW some @ésadS& FNRBY /1D YWYRYTAMEK { LISSR
speed, wiper status, climate) are converted to MOST messages and routed into the MOST bus.

http://en.wikipedia.org/wiki/MOST_Bus

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:450f 276

The MOST bus transports control data as well as data from audio, video, navigation and other services.
MOSTtechnology provides a logical framework model for control of the variety and complexity of data.
The MOST Application Framework organizes the functions of the overall system. MOST is able to control
and dynamically manage functions that are distributethia vehicle.

There are two places to enforce the access to the vehicle data. We can place the enforcement point
inside the webinos runtime: When an app calls a specific vehicle function, the runtime checks back with
a PDP, if the access is allowed or riballowed, the request is pushed to the OS service to create a
MOST message and put it onto the bus. At the OS service (before we built the MOST message for this
request) we could also check back with the PDP, if the access is allowed or not.

Technical use cases
This section includes the Technical use cases and requirements identified from the WP2.1 and WP2.2 in
the area of Privileged Apps and Services.

User Stories, Use Cases ldentified

Related User Stories
WOSUS7.1: Designing Polieaware webinos Apptations
WOSUS7.4: Privacy Controls and Analytics for Corporations and Small Businesses

Related Use Cases

2 -WETA8002: Interpreting policies and making access control decisions

2 -WETA8003: Enforcing multiple policies on multiple devices

2 -WETA8007: Policy authoring tools

2 ‘WETA4013: Dynamically Sharing Content with other Users in a Controlled Manner
-WETABOOX: Checking access to APRefers to Content Adaption

2 -WETAL008:webinosFederation

2 -WETA4014: Contimous sharing of a medical file through webinos enabled devices
2 -WETAZ008: Create contexts from a pefined template

OB OB OB ST ST OB Ol O

This section of the specification aims to satisfy the following require ments
SROxford50

-tJ$ROxford51
-U3ROxford116
-DEVambiesenseé)8
-USRTSH4
-DWRISMB202
-tJ$ROxford35
-tJ$ROxford-38
-U§ROxford115
-tJSROxford 72
-tJ$ROxford-36
-tJ$ROxford34

eEeEeegeeeeeeeee

Secure W

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:46 of 276
w -UFROxford5

w -USROxford17

w -DEVOxford28

w -USRTUM*(124)

ﬁwebmos

FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:470f 276
Privileges and Access Control Use @se and Requirements identified
Policy management, authoring and usage features
ReqlD Requirement Noteg :Z?SCas Review|Architecture ||Priority
PSUSR pser§SHALIb§ p.rovided vyith the ability t WOSs ul, Polic
identify applcations which have beg¢ UCTAS
Oxford50 . . layer
granted particular privileges 006
PSUSR UsersSHAlee gblg to view a list of all the WOS ul, Poli
webinos applications and show f{ UGTAS
Oxford51 . e o layer
authority that certified the application 006
Runtime Protection:
) Use Cas . . .
ReqlID Requirement Notes Refs Review|Architecture |[Priority
The webinos runtime environment
SHALLprotect applications and itsg
from potentially maliciou
applications andSHALLprotect the
devicefrom being made unusable
PSUSR damaged by applications. T WRE. APIs Phase
Oxford116 |webinos Runtime Environment is ' 1
naturally privileged process th
should be strongly protected frg
applications. Furthermore, it my
prevent applications from misusi
device capabilities when dy run.
The webinos runtime environmen
SHALIsupport customised encryptiq
PSDEV of any data stream (independent Phase
ambiesensel|jits data type or format) The mg None WRE 5
08 threat is anyone seeking t
information/ data transferred in th
data stream
webinos shall ensure that on _
PSUSRTSI4|[trusted components are downloade Policy latet
and that applications are guarante App manifes
some level of execution (to preve

¢5)webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:480f 276

from denial of service) Devi
integrity ¢ prevent malwarg
compromising réability + conf.
availability. QoS. This impl
knowledge of the components th
are trusted?

The webinos runtime MUST ensurg WOSUGC
PSDWR that an application does not acc¢Moved|TAG00X:

device features, extensions g|from |Checking WRE, APls
ISMB202)

content aher than those associatd|LC access t

to it. APIs

Policy management, authoring and usage features

ReqID |[Requirement Notes Use Case Refs ||[Review|Architecture| Priority

webinos access conul

- : .| WOSUGTAS
policies shall be able |This implie

PSUSR . , . .. |l002: Interpreting .
specify finegrainedthat application| . . P] WRE, Polig
Oxford . . . policies an
controls involving thilinstances ar| . layer
35 making acces

source and content of dlidentifiable

control decisions
access control request

webinos SHALL allow

olicies which speci * WOSUGTAS
PSUSR P . . p- 002: Interpreting
confirmation at runtimg

Oxford See WAC. policies an Policy layer
by a user when an accg .
38 making acces

request decision .
. control decisions
required

Application policies and protection

ReqlD ||Requirement Noteg|Use Case Refs ||Review|Architecture ||Priority,

webinos SHALL encourage goo
design techniques and principles
users are not forced to acce
unreasonable privacy policies & APIs, App
access control policies.webinos Dev tools
ApplicationsSHALIbe designed wit
user policy negotiation an
preferences in mind.

PSUSR
Oxford
115

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:490f 276

The webinos SystemSHALLsupport
applications which apply acce
PSUSR ||control policies to data prasted o Phase
Oxford |lowner by the application developg WOSUGTA4013 WRE 2
72 These policies MAY support
revocation of access cont
permissions
webinos APIs shall provide err
results when an ascess cont " WOSUCTAS
PSUSR . . 002: Interpreting .
request is denied DevelopeSHAL . P] WRE, Poli¢Phase
Oxford policies an
be aware of how to program f . layer 1
36 . making acces
graceful handling of access con .
control decisions
requests.
* WOSUGTAS
PSUSR |webinos shall provide complet 002: Interpreting Phase
Oxford ||mediation of access re@sts by policies an WRE 1
34 applications and enforce all policie making acces
control decisions
Device discovery, communication and authentication
ReqlID |[Requirement Notes|Use Case Refs Review|Architecture ||Priority
The level of authority associat
with a clientwebinosdeviceSHAL|
PSUSR|be established before & .
L . . * WOSUGCTAZX008 Policy laye
Oxford |lassociation is established with . .
. _ webinosFederatiom Comms
5 webinos cloud. How i
authorisation and access cont
defined bywebinos?
ThewebinosRuntime Environmel,
SHALL be capable of settin * WOSUGTA4014
PSUSR ||dynamic access control policies Continuous sharin
. o : . WRE, U
Oxford |device data when initiating @ of a medical fil _
L . . Policy
17 association to anotherwebinos through webino
Device. What format do the enabled devices
access rules take?
Sharing and protecting personal and contextual data
ReqIlD ||Requirement Noteg|Use Case Refs Review|Architecture |Priority

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:500f 276

PSDEV The webinos Runtime SHAL * WOSUGTAT008

Oxford provide access control f Create contexts frol WRE, AR|Phase

28 context structures with use| a predefined Policy layer |1
defined policies template

Privilege apps for Device Manufactures

ReqID||Requirement Notes Use Case Re|Review||Architecturg|Priority

Let there be a signg
certificate, Identity an
Integrity checks fq
widget based App
Protection and Securi
from hacks at th
runtime and accessil
sensitive API's. i
the device support . thesd* WOSUG
Cryptographic methodyTA8002:

PS manufacturers, for th Encryption code SHAL||Interpretin
USR |japplications that acce yp P g Comms,

) .. |lbe used. The AppSHAL||policies an
TUM- flwide range of critic be signed and Eﬁfirme fnakin acces WRE
*(124) |information from g g |

. . |lby the Devic|control
vehicle data, mobil¢ .
, Manufacturer whel|decisions
setupbox will have to | . " .
approved b th using Sensitive API's g
PP y Critical data, thereSHAL
manufacturer of the L
device be a Monitoring systel
which checks ar
manages that there is 1
access to critial data lik
Engine Diagnose AR
and HW data.

webinos SHALLprovide
privileged apps arn
services to support th
trust based factor fq

Note:

e The geolocation could possibly be also provided by the vehicle API, but we have already the
Geolocation API.

e Applications using the vehicle APl have to be approved by the manufacturer of the
vehicle/Device. If the application is not approved, then the application cannot access the vehicle
API.

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:510f 276

Analytics

Definition of analytics

Analytics is the epitomy of Business Intelligence (BI) science born by the overwhelming wealth of
information in the cloud and the shockingly detailed digital trail left throughout the user joutheya

mix of advanced statistics and data mining techniques which combine, homogenize and translate this
wealth of digital information from disparate sources, into actionable business intelligence.

Applications of Analytics solutions include:
o hardwarehetwork/application troubleshooting,
¢ hardware/network/application performance optimization,
e usability testing,
e Security analysis/forensics

e marketing:
- usage tracking
- recommendations,
- targeting,
- campaign performance tracking & management,
- sales tracking

Analytics solutions are also categorized based on the available measuring/probing points: device (on
chip), network (transport, IP & DPNYeb (http), application (in app), app store (sales). Since the
webinos platform will reside between theansport layer of the network and the actual application (as
part of theWebrun-time) the closest category is "application (in app) analytics".

Key issues & challenges of analytics solutions
¢ visibility: an analytics solution is inherently limited by the data that can be collected e.g. an
application has no "visibility" about what the user is doing with other applications.

e device issues: caching (device caching consumes memory), processirsgaryd device battery,

e data homogenization across devices and services: different devices and platforms produce
different kind of data that need to be "normalized" in order to be comparable.

e privacy issues of data gathered
e data ownership issues of ayéits (who owns the insights about the users data?)

It is also important to mention that the value (and main challenge) of an analytics solution is in the
actual analysis (define meaningful and actionable 'recipies') & reporting. This however depends on th

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:520f 276

actual Bl application. Therefore, at platfotavel, the aim is only to provide the means to easily collect
and log information.

To this end, webinos is a game changer from existing platforms in that it enables:

e a uniform interface for extraction of infmation across many different device domains; car, pc,
home media, mobile

e a uniform interface for extraction of information across service domains.

e webinos has a strong security framework which provides a solid mechanism for ensuring that
privacy controis in the hands of the user.

e webinos authentication mechanism enables tracking of usage across devices / services without
the need for separate logins

The combination of these enablers give webinos a big advantage ebesrtd visibility across devices,

services, networks and usage contexts.

Analytics solutions high level architecture/work-flow

e define metering rules (what/when/how to capture)

deploy metering rules

e capture/metering based on atering rules and privacy/security settings
e transfer and store data to (log)

¢ homogenization (if necessary across devices)

e transfer to analysis engine/repository

e production of actual analytics processingport

Note: The wordMetering refers to the lowlevel process of collecting/measuring & recording data
points and event triggers, i.e. without any kind of further processing,

normalization or analysisMetrics are therefore the directly measurable events and data points.
Analytics refer to the product(¥ of the statistical analysis of those metrics.

The architecture can be divided in three parts based on different sets of implementation requirements:

o platform: definition and deployment of metering rules, data capture and local (within personal
network) storage

e implementation: data homogenization and transfer to analysis engine (and potentially to
external repository)

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:530f 276

e application dependent: data mining and statistical analysis for the generation of business
intelligence and reporting

To this end, WP3 apities are only concerned abogtatform related issueslmplementation and
Application dependent issues may be investigated as part of a WP5 podabncept application
implementation.

References to requirements
The need to provide support for analytics at platform level has been ideniifidte following webinos
requirements (see Deliverable D02.1 Use cases & requirements).

ID Description

WOQOS-US-7.4 Privacy Controls and Analytics for Corporations and Small Businesses

WOS-UC-TA8-013 | Collecting Analytics from webinos Applications

End User cross Platform Privacy Analytics in Healthcare, Smart Grids and

WOS-UC-TA8-014 .
Home Environments

What's in scope
o Identify an initial list of "meterable" data pointsd events based on existing list of APIs

¢ define metering rules (what/when/how to capture)
¢ define necessary privacy/security policies
e data capture/metering based on metering rules and privacy/security policies

¢ deploy mechanism for metering rules (howtie metering client/logging mechanism getting
updated with new rules ovethe-air)

e transfer and store data to (log)
What's out of scope
Deferred to second phase:

e provision for complex metering rules which may involwere than onestate, data point
(pattern/sequence signatures)

May be implemented as part of prooff-concept applications (WP5):
e homogenization of data across device and services (if necessary)

e data transfer to analysis engine/external repository

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:540f 276

¢ implementation of an actual analytics processing & reporting engine

Review of State of the Art

Existing analytics platform provider are split broadly in two categowéet and applicatiorbased. For
mobile telecans three more categories exist, namely: mobile messaging, SIM and network.

The categories are defined based on the metering software tguaiht, i.e. its visibility in terms of
available data and event triggers.

Here follows an overview of some prominas@mmercialapplication analytics solution providers:

Distimo http://www.distimo.com/

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line

App Store Analytics (no devicéecit)

Distimo Report custom reports aimed to companies providing insight into trends happening within
application stores.

Distimo Monitor free analytics tool for developers to monitor their own and competitive applications
across all app stores

Core product e.g. application analytics SaaS, custom reports, app store analytics

(App Store Analyticsno device client)

Distimo Report: custom reports aimed to companies providing insight into trends happening within
application stores.

Distimo Monitor: free anlytics tool for developers to monitor their own and competitive applications
across all app stores

Platform targets e.g. iOS, Android, or app stores supported

Distimo Monitor: Apple, Android already; Blackberry, Nokia Ovi in 2010

Distimo custom reports areurrently available for the Apple App Store for iPad, Apple App Store for
iPhone, BlackBerry App World, Google Android Market, Nokia Ovi Store, Palm App Catalog and Windows
Marketplace for Mobile.

Data ownership and privacy
n/a

Type of analytics e.g. app store, in-app, billing, Web
app store

Bango http://bango.com/

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line

Mobile Billing: irapp and mobile websites (credit card, payan-bill)
Mobile Analytics: mobil®/eband campaign analytics,-app analytics

Core product e.g. application analytics SaaS, custom reports, app store analytics

http://www.distimo.com/
http://bango.com/

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:550f 276

Mobile Billing: irapp and mobile websites (via credit card, paypatbdh
Mobile Analyics: mobileWeb and campaign analytics, -app analytics (unique users, avg session
length, avg sessions per day traced by spedfiabcalls).

Platform targets e.g. iOS, Android, or app stores supported
Libraries for probing on the application side andMAAP| are provided.
Data ownership and privacy

Data ownership is offered for a premium. Data are accessed by all subscription packages with timeframe
limitations.

Type of analytics e.g. app store, in-app, billing, web
web; inapp; billing (via own solutign

AT Internet http://atinternet.com/

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line

Web/ecommerce/mobile/social networking analytics;
tagline: How to help with the d@llenges of customer acquisition, transformation and retaintion.

Core product e.g. application analytics SaaS, custom reports, app store analytics

Service analytics: through reports provide information like connection type (wify/network) what's the
speed hetwork provider;

Mobile and Campaign: originally was only focused on mobile websites, last couple of years developed
solutions to provide app level (usage) e.g. number of times used, number of crashes, navigation through
app, popular pages, offline datand how is being used.

Social media: BuzzWatcher measures activity on social media channels (including social networks, video
platforms, RSS feeds, blogs etc,) in real time.

mobile nx ""module™ is the welside component which integrates with the "digitalorkspace™
dashboard (server performanc@/eb analytics, social media, mobile analytics). Libraries for probing on
the application side are provided.

Products are defined by what data collection method you use (i.e. probing peimtsbile is: tags for
mobile sites, behavior, apps, purchase and offline usage info

Platform targets e.g. iOS, Android, or app stores supported
in-app analytics: Symbian, iOS, Blackberry, bada, Android.
Data ownership and privacy

n/a

http://atinternet.com/

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:56 of 276

Type of analytics e.g. app store, in-app, billing, web
web; inapp; ecommerce (via own solution)

Flurry http://www.flurry.com/

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line

application analytics
tagline: aiming to make the life of developers and publishers easier.

Core product e.g. application analytics SaaS, custom reports, app store analytics

Analytics: core free kapp analytics solution with librariegyebdashboard and reporting interfaces, and
API accesw® the data.

Analyzer Mobile: targeting service for applications;

Appcircle: affiliate network for recommendation engine.

Developers have free access to event data and reports via APl and can downlvdéelbvigerface as
""_CSV""_

Platform targets e.g. iOS, Android, or app stores supported
iOS, Android, Blackberry and Java
Data ownership and privacy

Flurry keeps data for thouse analytics and benchmarking in "aggregate” form. Anonymity is ensured in
Ts&Cs.

Type of analytics e.g. app store, in-app, billing, web
in-app

Localytics http://www.localytics.com/

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line
Mobile application analytics
Core product e.g. application analytics SaaS, custom reports, app store analytics

2-tier Application analytics solution:
1: library/sdk for integration in app during building (Open Source Software)
2: Webportal/service which collects the data and processes intiea (reportedly 23 mins update).

offered in Community (free) and Enterprise (paid) editions.

Localytics Enterprise service builds on the Community version adding the following premium features:
- Bookmark / save charts
- Export session data for integrating mobile analytiatadvith other enterprise reporting packages.

http://www.flurry.com/
http://www.localytics.com/

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:57 of 276

enteprise customers can access the raw data. free users can only download generated reports
- Data export API for integrating mobile analytics data with other enterprise reporting packages.
free users onlyia website

- Location services

- Optional firstparty analytics

Platform targets e.g. iOS, Android, or app stores supported
iPhone, iPad, Android and BlackBerry
Data ownership and privacy

Based on level of agreement:
Enterprise customers: don't use or didh data without approval.
Free users: netiniquelly identified customers and people without approval.

Type of analytics e.g. app store, in-app, billing, web
in-app

Mobixy http://mobixy.com

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line

Mobile data analysis and management solutions.
tagline: mobixy provides mobile data analysis and management solutiosn for marketers and product
managers. (beyond the if and answer the diims of what/when/how/why)

Core product e.g. application analytics SaaS, custom reports, app store analytics

Data analytics: in application events and interactions between applicatioMégtuservices (e.g. yahoo

or google apis), location and context, offfa load times, response times for screen loading etc.
Currently integration only via API. Wrapper libraries will be available probably end of month.

Data management: Mobixy monitors device and network connectivity (speed, device type etc) so they
can pofile the session and optimize the stream/be selective in the order of information transactions
with the Web.The aim is to enable the developer to prioritize the data that are being retrieved from the
"cloud™ or any RESWebservice. Automatic optimizaih can then establish which data "blocks™ can

be left out/postponed dynamically based on device and connection performance.

e.g. So the developer can optimize the data or detect why some parts are not being used (e.g. maybe
they are very slow to load)

Platform targets e.g. iOS, Android, or app stores supported

in-app analytics: currently available via API and is being encapsulated in a library. Library available for
iPhone. Roadmap: Java Android, Blackberry and later Windows.

Data ownership and privacy

http://mobixy.com/

¢5)webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:580f 276

mobixy doesn't reuse any of the logged information.
Developer/publisher can opgh marketing program and share aggregate information with marketing
partners of mobixy.

Type of analytics e.g. app store, in-app, billing, web

in-app; Weband data services (AREST) application interactions

Recommendations from state of the art

Currently, Localyticshftp://localytics.con) is the only commercial en-end applicéion analytics
platform provider (both client libraries & server components forhouse hosting). Two other
companies which offered similar solutions are: Appclix (closed beta sinc2dafeno trace of activity
since) and Motally (purchased by Nokia 4Q2 and discontinued products).

Localytics is also the only solution which offers a public version of the source code undederB&8D
open source licensénftp:// wiki.localytics.com/doku.php?id=the localytics modified bsd_license

Due to the lack of openly available code bases, technical specifications or standardization efforts to
date, webinos could potentially offer a reference open implementation for sudersgs To head start

the specification and development of the metering/analytics functionality webinos can leverage the
open source version of the Localytics code base.

http://localytics.com/
http://wiki.localytics.com/doku.php?id=the_localytics_modified_bsd_license

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:59of 276

4. High level overlay architecture

Architecture

This section will describe the welis architecture, which is centerezh the notion of a Personal Zone

as a means to organize your personal devices and services. Each device, whether it be a mobile, tablet,
desktop, TV or htar head unit, includes a Web browser that is extended to endidedevice to be a

part of the Personal Zone. The Personal Zone Hub runs on a Web server with a public URL, and provides
the means for other people to access your devices and services subject to your preferences. All devices
in the Zone have access to a stthmodel of the context, this allows them to operate when offline, or
when temporarily unable to access the Internet.

The webinos architecture seeks to make it easier for Web application developers to create applications
that span devices and firewallhi is achieved through:

e Logical communication paths based on trust relationships, and decoupled from underlying
interconnect technologies

e Simple access to local and remote services

e Simple discovery of devices/services

e Trust based on social relationshipstlveen people
e Adaptation based upon access to the context

The simplicity of the high level APIs for Web application developers is realized through 3rd party
components that layer on top of lower level APIs and mask the complexity involved. It is antidipaite

this will lead to a market for such components as demand is stimulated by the continuing evolution of
devices and interconnect technologies. This in turn will feed the market for services provided by Web
developers. This report mainly focuses on thigh level APIs exposed Web developers, and further
reports are expected to elaborate on the lower level APIs and protocols as a basis for interoperability
across implementations of the webinos platform.

Applications and Services

Applications may be alvnloaded and installed on devices, or they may be hosted by servers, with
components that are dynamically downloaded when needed. Applications can make use of services, and
in turn can provide services. Services may include a user interface exposed afsgoaapplication, e.g.

within an HTML iframe element. The ability to combine and tailor services is used to support "mashups".
Applications are essentially services that can be installed or bookmarked.

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:600f 276

Personal Zones

We individually own an increasingimber of devices, for instance, a smart phone, tablet and desktop
computer, TV, and other consumer devices. The Personal Zone provides a basis for managing your
devices, together with the services you run on them. This includes personal services youthese in
Cloud. The Personal Zone supports:

e Single sigion, where you authenticate yourself to a device, and the device authenticates to the
zone. This avoids the need for establishing direct peering relationships between each pair of
devices. It also allowff stronger authentication with the services you use. No more typing
user ids and passwords iniWeb page forms! Note that the architecture allows for situations
where you are offline, e.g. when you are away from home and are currently unable to access
the Internet.

e Shared model of the context. This covers users, device capabilities and properties, and the
environment. It enables applications to dynamically adapt to changes, and to increase usability
by exploiting the context.

e Synchronization across the dees in the zone. This includes support for distributed
authentication, as well as personal preferences, and replication of sespmeafic data, e.g.
social contacts, and appointments. Synchronization is essential for supporting offline usage.

e Discoveryand access to services. This includes local discovery, e.g. of services exposed by your
devices, whether connected through WiFi, Bluetooth, or USB, as well as remote discovery for
services exposed in the Cloud. The high level discovery API allows Wetpdevéb search for
all local services, or to filter by service type and context, or even to locate a named service
instance. Remote discovery is based upon the URL for a Personal Zone, or an email address or
phone number, or even someone's name or pseudon

e Licenses for the services you have purchased and run as part of your Personal Zone. This
includes locally installed applications and hosted applications, dynamically loadedvielm
servers. The aim is to provide an open market\ieb developers thatis not controlled by a
single vendor.

e Trust relationships based upon social graphs. You have full access to all of the devices in your
Personal Zone, as well as to shared devices, e.g. a network enabled TV that is accessed through
the home's WiFi networkand shared by all family members. You can determine which of your
devices are visible to your friends, and what services they can make use of. This is based upon
preferences associated with your social graph. The preferences are updated as you make
decisims in the course of using services, or through a Zone preference editor.

Binding, privacy and security

The webinos platform provides each device with an API for accessing services exposed directly by the
Personal Zone. An example is the method used toossr services matching the given service type and

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:610f 276

context constraints. The method is asynchronous, and results in call backs as service instances are
discovered. Developers can then provide a user interface for selecting between alternatives, where the
list is dynamically updated as services become available or cease to be available. The approach allows
Web developers to offer users the means to obtain further information about each of the choices, as
well as to record preferences for use in future sitoas.

The process of binding to a service (having first discovered it) involves:

e mutual authentication, where the Zone authenticates the service, and the service authenticates
the Zone

e secure communication through the use of transport or application laperygtion, and checks
against man in the middle attacks, spoofed IP addresses and spoofed DNS records

e agreement on data handling obligations as set out in the service's privacy policy
e reviewing and granting the request by the service for elevated privilege

The architecture allows for an extensible set of authentication technologies, including those needed for
existing (noAwebinos) services, such &acebook. Users are able to set up multiple pseudonymous
identities and to choose which of them should apjiythe current situation. Webinebased services
provide authentication requirements and account management information expressed in JSON. To cater
for privacy, webinos provides support for machine interpretable privacy policies based upon a subset of
P3Palso expressed in JSON, together with a link to full human readable policies. Users can further make
use of third party assessments of services, e.g. black lists of harmful services, andscuooet]
assessments. The webinos platform provides a secusislfar executing applications in which error
prone features are disabled by default, where such features are a common source of attacks.

Applications (or embedded services) can request elevated privileges. This is typically handled when the
application fist runs, and the user's decision recorded for subsequent uses. A Zone API enables
applications to request a list of privileges, and should be accompanied by information on what the
application needs these for. The underlying model is that of notice andertt. The associated user
interface is provided by the webinos platform, and not by the applications. A further user interface is
provided to enable users to review and revoke decisions. The device itself may impose security policies,
e.g. white listing Wich services may have particular privileges.

Extensibility

The webinos platform APIs are designed for extensibility. It is common to pass an object as an argument
to a method where the object supports one or more interfaces. These interfaces are ineatfing third

party components, and such third parties are also responsible for documenting the extensions. Web
developers can call a standard Queryinterface method to cast an object to a named interface, when
necessary to avoid name clashes.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:620f 276

Events or call -backs

Having been discovered and bound, a service is exposed as an objeciMelttpage’s script execution
environment. This object acts as local proxy for the service, which may be provided by a remote device.
A design decision is whether to supporOB eventing along with the capture/bubble module. The
alternative is to allowNVebpage developers to register a simple call back function, or to pass an object
supporting a given interface, i.e. with a named method that is used as a call back. The D@kgeven
model fits well when markup elements are used as proxies for services, with the content of the element
acting as constraints on the service type and context.

Webinos in the browser

A 'webinos" object is exposed as part of the global namespac®Viels page scripts, and provides the

core set of webinos APIs as methods and properties. The implementation may further involve scripts
and other resources running as part of browser extensions (Chrome extension or Firefox addon). These
may in turn make use dbrowser (NPAPI) plugins or local servers where native code is needed for
discovery or for service adapters, etc. An example is the discovery of devices connected via USB, where
a native code driver is dynamically loaded based upon the vendor and produ&ddvice adapters may
involve a combination of a low level native code driver together with a script library to interface the
service towWebpage scripts.

Synchronization and secure storage

Every webinos device will need some secure storage to suppidineatication, personal preferences,
policies and other data requiring synchronization. Synchronization involves detecting and merging
differences, and asking the user to resolve conflicts, taking into account periods of offline usage. The
process involvea comparison of clocks as a basis for correcting for skews prior to comparing the time
of each change. The approach is inspired by work on distributed revision control and 3 way merge
algorithms for tree structured data. Synchronization takes place whagvice connects to the Personal
Zone, and when changes occur. This is also coupled with local discovery, to enable a shared model of the
context. For Ifbased networks, multicast announcements and query responses can be observed to
update a local cachenformation which needs to be kept private can be protected and accessed
through HTTP together with transport layer security (TLS) and authentication. Different parts of the
context have different security requirements, and it may be appropriate to en¢hgrh with different

keys.

The Personal Zone is exposed as a local API in each webinos enabled device. This needs to function even
when the device is operating in isolation, or with a subset of devices in the absence of access to the
Internet. This relies o being able to synchronize the devices in a peer to peer model. Synchronization
depends on being able to merge changes, and to detect and resolve conflicting changes. If the context
data model is independent, then one approach is to simply take the latestige to a particular part of

the context. If the context data model has intdependencies, the updated model needs to satisfy the
integrity constraints. A transactional treatment of changes can help with this, as well as with providing

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:630f 276

support for roling back changes. Synchronization and secure access to the context form a crucial part of
the webinos platform. Browsers already support mechanisms for recording preferences and application
specific storage, e.g. cookies. Webinos could build upon thisagditlitional database files held as part

of the browser profile, and accessible from trusted code in browser extensions.

Personal Zone Hub

To enable external access to your zone, webinos defines a Personal Zone Hub (PZH) as a service that is
accessible vighe public Internet. This could for instance, be provided as a vadiged service to users

by Internet Service Providers or it could be integrated in the DSL router at home. The Personal Zone Hub
is identified by a URL and supports a RESTful APl based 8@N RPC. The hub is part of your Personal
Zone and supports access by you from other devices, e.g. when you walk into an Internet Cafe, enabling
you to access your Zone's devices and services for the duration of a browsing session. It also enables
access by others, subject to the policies that you have defined.

Personal Zone Hubs collectively form a federated social Web with support for social messaging based
upon your relationship to other people. For instance, you could keep a diary and allow ymasfid

add comments. Your Zone Hub can subscribe to near instant notifications when a topic (feed URL) you
are interested in is updated. You can install third party social applications to suit your interests.

The Personal Zone Hub further provides suportdiscovering other hubs based upon someone's full
name or pseudonym. This is implemented as a federated discovery process across hubs, starting from
your own hub. The results are ranked according to a measure of social relevance, drawing upon
information provided in your profile, or gleaned from other sources. The process is trusted with access
to personal data for ranking purposes, but is designed to avoid disclosing such data, except as permitted
by the owner's policies. Distributed hash tables prevasolution for locating candidate matches, but
further work is needed to determine the best approach for implementing a salalie solution for
privacy friendly ranking of results.

Personal Zone Hubs can also be discovered starting from someone's dara$ésor phone number.

The email addresses domain name can be used to locate a query service (typically provided by the
domain owner). Note that users may choose to limit discovery, e.g. to people within a given group, or to
prevent discovery altogethelin which case it is up to the user to communicate the URL for their
Personal Zone Hub to others as needed.

NAT traversal and efficient use of communication networks

The Personal Zone Hub supports the establishment of UDP or TCP connections acrossawetl beh
Network Address Translation boundaries. This will not nornadfsct Web developers, as the webinos
platform hides the establishment of such connections. The Personal Zone Hub can also help with the
efficient use of communication networks, e.g. bywheling events through a shared connection rather

than setting up new peer to peer connections, which is expensive on current mobile networks. Common
NAT devices have TCP session timeouts of 30 minutes to several hours versus just a few minutes for

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:640f 276

UDP. Lnger lived connections can be realized at a virtual level, with SMS wake up messages to re
establish lapsed connections, providing a means for maximizing battery life on mobile devices.

Key architectural components
This section defines the roles and reapibilities of the key architectural components in webinos and at
a high level defines the logical flow and process during normal webinos interactions.

Webinos builds upon the state of the art faNeb applications. Taking HTML5 and W3C DAP
technologies as foundation, it extends these concepts to allow for the following:

e Applications which make optimal use of the resources on the featured devices of TV,
Automotive, Tablet, PC and Mobile

e Applications which interoperate over diverse device types
e Applicationswhich can make user of services on other devices owned by the same person
e Applications which can make user of services on devices owned by other devices

e Discovery mechanisms to find services, devices and people, on multiple network- tgpes
when theyare not connected to the internet

e Efficient communication mechanisms, that can pass messages over different physical bearers,
can navigate firewalls, and make sensible use of scarce network resrouces

e Strongly authenticated, communication mechanisms thatkvbi directionally- we know we
really are talking to the remote service, device we thought we wetackling head on the
spoofing and phishing weaknesses of WWeb

e And finally, implementing distributed, user centric policy:
o allowing the user to defim what applications work on what devices,
o to define what information is exposed to other services
o and ensuring these capabilities are interopable and transferablesuring a user stays

in control oftheir devices andheir applications

Webinos Web Runtime (WRT)

A webinosWeb runtime, is a special type of browser. It should be capable rendering the latest
JavaScriptHTML4/5 and CSS specifications. It is responsible for rendering the Ul elements of the
webinos application

e Oy e FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:650f 276

A webinos WRT must be able tocass the webinos root object frodavaScriptVia this root object the
third party developer will be able to access the webinos functionality.

A webinos WRT differs from a normal browseMéeb runtime in that all extendedavaScriptunctions
as well assome normal browser behaviours (such as XHR) must be mediated by the webinos policy
enforcement layer.

A webinos WRT will present environmental properties and critical events to the Personal Zone Proxy
(PZP) so that it may process the security policy amiextual events, correctly.

A webinos WRT should be deentéghtly boundto the Personal Zone Proxy (PZP).

There is special case of WRT that binds to the PZH not the PZP, hence server vs device centric. This
variant is called a Server Based Runtime (3&hgr than a WRT.

e —

P .
Smart Device

AppHost

webinos mET:
: bindin PZP
runtime e

Local APIs

ﬁweblnos

FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:66 of 276

Specification areas

The web runtime component must implement the following aspects of the specification
e Foundations:

o Rendering and code: the WRT must be compliant with all the HTML5,J&8@Script
versions defined in the foundatis document

o Packaging: the WRT may be responsible for unpacking the application manifests (W3C
widget specification). However, in the implementation phase we may also evaluate the
advantages of performing the processing of this at the Personal Zone F?@8) (
instead

e Security:

o PIP: the WRT must act as a policy information point for the webinos policy. In other
words the WRT must provide "security context" and call backs into the PEP (Policy
enforcement Point) which resides within the Personal Zone PRZRP).

e APIs: the WRT MUST provide the webinos object at document level upon which all the webinos
objects and methods may hang. In the implementation phase we shall evaluate the pros and
cons of implementing the APIs within the WRT natively vs

webinos Perso nal Zone Hub (PZH)

The Personal Zone has already been introduced in the Overlay Networking Section.

The Personal Zone is a conceptual construct, that is implemented on a distributed basis from a single
Personal Zone Hub (PZH) and multiple Personal Zaxy BPZP)s

The critical functions that a Personal Zone hub provides are:

e An fixed entity to which allequestsand messagesan be sent to and routed ona personal
postbox as it were

o A fixed entity on the web through whidlequestsand messagegan be isued, for security and
optimisation reasons.

e An authoritative master copy of a number or critical data elements that are to synced between
Personal Zone Proxy (PZP)s and Personal Zone Hub (PZH), specifically

o Certificates for Personal Zone Hub (PZH), PalsaZzone Hub (PZH) mutual
authentication

o Hashes for user authentication
o Certificates to authenticate PZXstnfsted peopleagainst each other

o Application identifiers (and/or certificates) of applications granted access into the zone

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:67of 276

o Service identifies (atior certificates) for trusted services to which the personal zone
may attach

o (Subject to investigation) device identifiers, to assist with platform integrity tests

o (Subject to investigation) credentials for "non webinos" services to give a pseudo single
sign on experience

o All policy rules, for distributed policy enforcement
o All relevant context data

e The functions therefore that a Personal Zone Hub (PZH) can support are

o User authentication service

o Personal Zone Proxy (PZP) secure session creation fusptd of messages and
synchronisation

o Service session creation for secure transport of messages between applications and
services

o Secure social networking: using the exchanged certificates betivasted people

o Potentially: single sign on service to otheeb services, using the Personal Zone Hub
(PZH) as a secure proxy

e A webhinos service host: a Personal Zone Hub (PZH) can host directly Services/APls that other
applications can make use of.

e Context sync: the Personal Zone Hub (PZH) should act as ther mesository for all context
data

e A webinos executable host: a Personal Zone Hub (PZH) will be able to run a server resident
webinos applications (these will klavaScripprogram files wrapped in a webinos application
package)

Specification areas

The Rersonal Zone Hub (PZH) component must implement the following aspects of the specification

e Foundations:

o Rendering and code: the Personal Zone Hub (PZH) will run server resident webinos
applications using node.js or similar

o Packaging: the Personal Zone HBZH) should be capable of unpacking and performing
security checks on packed widgets

e Security:

o The Personal Zone Hub (PZH) must store the policy files

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:680f 276

o The Personal Zone Hub (PZH) should act as a server based Policy enforcement point
therefore must medhte all relevant traffic

e Messaging: the Personal Zone Hub (PZH) must be able to route messages to the relevant
Personal Zone Hub (PZH) or Personal Zone Proxy (PZP), or in cases where the message is routed
to a locally hosted service, pass it for execution

e Synchronisation: the Personal Zone Hub (PZH) must implement the synchronisation algorithm
and process synchronisation protocol messages.

e Authentication:

o the Personal Zone Hub (PZH) must allow for a user to authenticate, or raise their
authentication levé

o the Personal Zone Hub (PZH) must authenticate Personal Zone Proxy (PZétjsand
usersto set up trusted sessions

webinos Personal Zone Proxy (PZP)

The webinos Personal zone satellite proxy, acts in place of the Personal Zone hub, when there is no
internet access to the central server.

In order to act in its place, certain information needs to be synchronised between the satellites and the
central hub.

This information has already been listed above.

The Personal Zone Proxy (PZP) fulfils most, if lhof the above functions described above, when there
is not Personal Zone Hub (PZH) access

In addition to the Personal Zone Hub (PZH) proxy function, the Personal Zone Proxy (PZP) is responsible
for all discovery using local hardware based beat@gefooth, Zige , NFC etc)

Unlike the PZH, the PZH does not issue certificates and identities.

For optimisation reasons PZPs are capable of talking directiPP2ZPwithout routing messages through
the PZH

6‘!!’&!2!&93 FPZICT-20095 257103

D3.1: Webinos phase | architecture and components page:690f 276

Authentication Certs
User Tokens
App IDs
Service IDs
Friend IDs
Policy
Context

Routing

Sync JSON-RPC
Packets Packets

Sync

TLS
Messaging

Authentication Certs
User Tokens
App IDs
Service IDs Routing
Friend IDs
Policy
Context

Specification areas

The Personal Zone Proxy (Piiflements all of the above functions, with the following differences

Messaging:
o A Personal Zone Proxy (PZP) routes all "internet" messages to the parent Personal Zone
Hub (PZH) for distribution
o A Personal Zone Proxy (PZP) routes all "local" messagée televant local device,
using
Discovery: the Personal Zone Proxy (PZP) must implement a full array of local device discovery
protocols.

Security:

o the Personal Zone Proxy (PZP) is THE primary policy enforcement point for all
application processing

o the Pesonal Zone Proxy (PZP) will attest to the integrity of other key components on
the device

Packaging: a Personal Zone Proxy (PZP) may optiersligject to investigation perform
webinos application package processing and integrity checking on behladf 9fRT

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:700f 276

webinos Application

A webinos application runs "on device"Here that device could also betérnet addressable i.e. a
server).

A webinos application is packaged, as per packaging specifications, and executes within the WRT.
A webinos applicatio has its access to security sensitive capabilities, mediated by the active policy.
A webinos application can expose some or all of its capability as a webinos service

An application developer is granted access to webinos capabilities via the webinoSanasbcript

object.

Specification areas
An application developer needs to be aware of the following parts of the specification

e Foundations: an application needs to packaged and programmed according the foundation
specification

e APIs: a developer has accesghe rich set of capabilities defined within the API specification

o infrastructure capability: much of the intelligence of webinos is provided transparently
to users. However certain key functions, such as discovery, and service binding, are
provided

e Oy e FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:710f276

webhinos Service

A webinos service is a collection of functions and events, that are accessible by an webinos
application

PZP

ServiceHost

Binding

JSON-RPC
Packets

TLS

Messaging

ServiceHost

These functions and events are always presented to the application developer as aJse&8tript
functions, no matter where the impieentation resides.

There exist the following sutypes of webinos services

1. native device webinogPls: such as specified in deliverable WPBLi2se may be implemented
on the same device on which the application resides, and the implementation may beemovi
through aJavaScripbinding to native code, via plugin technologies such as NPAPI, or indeed
hard-coded enhancements to davaScripengine. Access to the API must still be mediated by
the PEP (policy enforcement point) within the Personal Zone RR&®)

2. remotable smardevice hosted webinos APIs: APIs that can be accessed remotely (using JSON
RPC). A remotable webinos API is hosted by a Personal Zone Proxy (PZP) and again access is
mediated by the PEP on the Personal Zone Proxy (PZP) of callehéRBrsonal Zone Proxy
(PZP) of provider

3. remotable dumbdevice hosted webinos APls: As above, where the device is not a smartphone,
PC or tablet, but a small sendiee device which has its own Personal Zone Proxy (PZP) and
therefore can directly authentate to the PZ and communicate via JSON RPC

%\‘!Y&Q!ﬂg§ FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:720f276

4. remotable superdumb-device: as above but device is even more lightweigimd cannot talk
webinos directly. Instead a host device presents as webinos driver (a mini Personal Zone Proxy
(PZP)) that can communieanatively to the supedumb-device and transcode the-directional

comms into webinos protocols.

5. remotable server hosted APIs: these are web services, accedaNdScrip{using JSON RPC).
These are hosted by a Personal Zone Hub (PZH) and securiigtedeoly the PEP within the
Personal Zone Hub (PZH)

6. application hosted APIs: a full application, which is hosted by the WRT may present external
services JavaScripfPIs) that other applications can then make use of

ServiceHost

S S

PZH
.
Routing

PZP

e dl PE]

3DIALBS 7
e
=il

PzP

82JAIBS T
9DJAIBS IE

Apps

ﬂ el
3
20JAJBS 19
80JAlBS i

SuperDumb

Specification areas

A webinos serge must take note of the following parts of the webinos specifications

e Discovery: a service must be discoverable and be able to describe itself to the application in
accordance with the discovery specification

e Messaging : a service must be able to recaive respond to incoming RPC messages

%\‘!Y&Q!ﬂg§ FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:730f 276

Local Connections

One of the critical innovations of webinos, is the virtual overlay network that allows different
applications and services to talk to each other over many different interconnect technologies.

Not only are the interconnect technologies for local messaging, there are three different scenarios in
which this communication can take place

These are highlighted in the diagram below.

Smart Device with WRT

PZP
Bearers \ /
Smart Device with WRT @
Dumb Device No WRT
PZP
.
foutiog | RFID__| /
\ J
| Super Dumb Device No WRT No
pzp
API

Custom
\ Driver

In turn:

1. Connecting to a full smart device, that hosts both a PZP (therefan host native APIs
presented as services) and a WRT (so can host webinos applications exposing webinos services)

2. Connecting to a dumb device, it hosts a PZP but not a WRT. This means that it can expose only
native APIs, not webinos applications

3. Conneting to a supetdumb device, it hosts neither a PZP nor a WRT, but can expose webinos
services if the client PZP hosts a customised driver

Specification areas
The personification that outline the detail of these connection scenarios are to be found in

e Owrlay networking
e Discovery
e Messaging

webinos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:740f 276

Sessions

A functioning webinos network will consist of, multiple devices, multiple servers and multiple
applications. It will require the interaction of PZPs and PZHs belonging to different users, over multiple
different networks.

Within that complex interaction, there will be many notions of session at different levels. It is important
therefore to be clear with our terminology.

External services webinos
session service

webinos
runtime

webinos

External services)
session service

Local APIs

Intra Personal Zone Relations
A single user will have many PZPs, on different devicggnly a single PZH, hosted on theb.

PZPs need to be installed securely on devReB installation bootstraghowever once this is done a

long term relationkip now exists between that PZP and the PZH. We will call this an "Intra Personal
Zone Pairing". This pairing shall be manifest by the PZP and PZH having exchanged certificates. Section
Conceptual Architecturexplains the details.

If a pairing exists between a PZP and a PZH they should try to enter an active Intra Personal Zone Session
with one another.

PZPPZH sessions (Intra Personal Z&8essions) always take place of the publicly addressable internet.
This is because one of the defining characteristics of a PZH is that it is must be permanently addressable
on the internet. A PZPZH session takes place over a TLS connection, assuringpehiaformation

http://dev.webinos.org/redmine/projects/wp3-1/wiki/PZP_installation_bootstrap
http://dev.webinos.org/redmine/projects/wp3-1/wiki/Spec_-_Authentication#Conceptual-Architecture

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:750f 276

exchanged in the session is secure. This secure channel, once established is the route via which all
communications between PZH and PZP, in either direction, takes place.

Note: as an optimisation out of band "wakeup" notifications may bquired to issue PZHPZP
messages in a timely fashion. These out of band notifications should only contain the bare minimum
information to request the PZP reactiviates the connection. No sensitive information should be passed
in the wakeup notificationsas they are not protected by the TLS channel.

When and PZH and PZP session is active it means that messages can be routed in either direction, within
a reasonable timdrame. (In practice less than a ps@ipulated timeout value)

A session is establishedhen a PZP and PZH have successfully authenticated.

When a session is successfully established between a PZP and a PZH, a bidirectional channel of
information is established across which all the following may happen

1. A PZP may authenticate/re authenticatgaanst the PZH
2. Outgoing webinos messages to external services (multiplexed through theAZBhannel)
3. Synchronisation traffic, of the following
1. webinos user identity information
2. webinos user data information
3. webinos PZP and PZH certificates
4. webinos polty
5. webinos friends identity information and certificates of their PZHs
6. webinos services tokens
7. webinos device identity tokens
8. webinos application identity tokens

9. webinos application data for synchronisation

External services relations

Individual webinospplications create "sessions" with webinos services.

All such sessions must be mediated by the PZP of the originating application. In other words only
application bound to a users PZP can make user of webinos services. The originating users PZP will take
care of authentication and the user centric policy enforcement.

The application can connect to two types of service:

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:760f 276

1. anonymous service: this is a webinos service that is mediated by -anthenticated personal
zone

2. PZ hosted service: that is a webinosvée owned by someone. Note in this scenario the
permission to access to the services, is mediates by two policy enforcement points, the
requester of he service and the hoster of the service.

Much like intra zone sessions, there are distinct notions oiriiRgl and "Binding".

If an application has been "paired” with a service, tokens may be exchanged at the PZX level. This token
exchange can be used by the webinos infrastructure to stwirtauthentication and permissions. The
active policies on any partpating appservice flow, must still have this permission granted

The process of binding an application with a service (irrespective of whether it has been already paired),
is akin to the notion of an intra zone session as described above. Whist thensessactive, in other
words whilst the binding is fixed then:

e Messages can be routed bidirectionally, between app and service within a reasonable time
frame (within a pre stipulated timeut value)

External service sessions can happen over the pubécriet or via the local network
Public internet sessions Mebhosted services will be mediated by the PZH

Local webinos sessions to local device services (including also APIs local to the WRT) are mediated by the
PZP.

External service sessions can thereftve carried over a number of physical networks and higher level
protocols.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:770f276

5. Specification

The formal specification is broken into subject areas, each of which has its own section

e Core architecture and specificatiordefines the key architectural componts and processes
that dictate how the webinos technology works together

(0]

Foundations:by reference to the critical foundation technologies, such as core widget
packaging specifications, defines and extends the data formats and protocols required
to write and package applications, that interact with webinos.

Authentication: defines the protocols required to authenticate the critical webinos
components against each other

Discovery:covers the mechanism by which different services can be found over multiple
different networks.

Messagingwebinos defines its own mechanism for efficiently pasting different message
types over the webinos overlay network

Context:defines privileged mechanisms by which the contextual information and events
from multiple devices cabe aggregated and supplied and later disseminated from the
Personal Zone Hub

Security:outlines the critical security elements, which are explored in greater detail in
the Security Architecture definition

e APIs formally defines theJavaScripfAPIs which docal application may discover and use on
device, and which may be invoked remotely from an application on another device

e Security:formally specifies the APIs, data formats and protocols required to implement a secure
distributed Web application executin environment

Foundations

The Foundations specification is about defining the structure of webinos applications and how they are
able to interact with webinos. This also includes packaging of applications, application APIs and
embedding webinos extensioms applications.

Formal Specification of webinos Application

A webinos application is defined as follows (citing D2.2):

An application written using webinos technologies that will run on a device, across a
range of devices reflecting the domains mobile, stationary devic es, automotive or home

tﬂwebmos FPZICT-20095 257103

D3.1: Webinos phase | architecture and components page:780f 276

media and/or server. The application will be able to securely and consistently access
device specific features, communicate over the cloud and adjust to the device and
context specific situation.

Webinos technologieinclude several existing and upcomiligeb technologies, as well as webinros
specific adebns which enable applications to be developed for multiple platforms. ibisdesaccess

to device features, transparent communication across devices, and securieatiopl execution. The
relevant Web technologies, if already available, are referred in the dedicated sections of this
specification.

Application META Data

Content

Configuration and Deployment META Data

Runtime and Execution META Data
1

A webinos application package consists of four types of metadata put together in an application
manifest file.

1. Applicaion metadata provides humareadable semantic information about the application
itself, e.g., version, description, author etc., which can be presented to the user and is accessible
by the application using APIs.

2. The content provides all the applicationdilayout logic and also media content such as images
and video needed by the application.

3. The deployment and configuration metadata provides information for the Web runtime about
how to deploy and install the application, e.g., whether the application can in the
background or not and which view mode the application prefers to use. This metadata also
contains information about distributed application deployment as well as any additional
functionality the application will expose.

4. The runtime and execidn metadata part of the application package provides information
about conditions which must be fulfilled to execute the application, e.g., fulfilled policies or
conditions under which the application may be automatically executed (non user driven).

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:790f 276

Packaging

The core structure and content of webinos applications is defined through the W3C Widget Packaging
and Configuration [Widgets] specification. Webinos application packaging, as a superset of W3C Widget
packaging, adds some further features to this @gfieation in order to meet additional requirements.

The following requirements show that webinos must confaowarious W3C specifications.

WRTO01: The webinos WRMUSTbe capable of processing widget packages as defined in [Widgets].

WRT02: The webino$VRTMUSTsupport the [WidgetDigSig] specification in order to verify the author
and/or distributor of the application.

WRTO03: The webinos WRNIUSTsupport application network access control as defined in the Widget
Access Request Policy [WARP] for appios that want to communicate with remote resources.

WRT04: The webinos WRMUSTimplement the URI scheme as defined in [WidgetURI] to address
resources within W3C Widget and webinos application packages.

In addition to the XML elements defined in theidyyet configuration document [Widgets] webinos
applications can make use of webirggecific extensions. The following separate webigpscific XML
namespace must be used to reference webispecific xml elements.

Webinos Extension XML namespace: httiwiiw.webinos.org/webinosapplication

The following elements are webinagpecific extensions to the metadata part of the [Widgets]
specification andMUSTbe supported by webinos WRTSs.

The distributor element

A distributor element represents people or an orgaation that distributed the instance of a webinos
application. Commonly application stores are distributors.

Context in which this element is used: As a child of the widget element.
Content model: Any.

Occurrences: Zero or one.

Attributes: href, email.

The emalil attribute represents an email address associated with the distributor. The email attribute is
optional.

The href attribute represents an URI that associates with the distributor. The href attribute is optional.

Example of Usage:

1 <widget xmins="ht tp://www.w3.org/ns/widgets”

2 xmins:webinos="http://www.webinos.org/webinosapplication">

3 <webinos:distributor email="info@examplarystore.com"
href="http://www.exemplarystore.com">

4 Examplary Store

5 </webinos:distributor>

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:800f 276

6 <content src="widget.html"/>
7 <lwidget>

The versionName attribute of the widget element

A version name element represents the version of the application in a hueatable manner. The
versionName element is optional and is not used for applicdife cycle management, e.g., application
update.

Context in which this element is used: As a parameter of the widget element.
Content model: Any.
Occurrences: Zero or one.

Example of Usage:

1 <widget xmIns="http://www.w3.org/ns/widgets"

2 xmins:webin os="http://www.webinos.org/webinosapplication”
3 webinos:versionName="Silver">

4 <content src="widget.html"/>

5 </widget>

The validfor attribute of the widget element

Thevalidfor attributed defines a time period when the application is validlaan be used. The time
frame is specified in elapsed milliseconds after the first application execution. If the specified time is
elapsed the user should not be able to execute the application any more. This value gives only the
semantic information witbut any security or licensing mechanism behind. Additional security, digital
rights management (DRM) or licensing methods are implementation specific and left unspecified.

Context in which this element is used: As a parameter of the widget element.
Contentmodel: Number.
Occurrences: Zero or one.

Example of Usage: Application valid for one week

1 <widget xmIns="http://www.w3.org/ns/widgets"

2 xmins:webinos="http://www.webinos.org/webinosapplication"
3 webinos:validfor="604800000">

4 <content src="widget.html"/>

5 </widget>

The validuntil attribute of the widget element

Thevaliduntil attributed defines a date and time until the application is valid and can be used. The time
frame is specified as in milliseconds whereas the date and time ageded as milliseconds since
midnight of January 1, 1970, according to universal time. If the specified date and time is reached the
user should not be able to execute the application any more. This value gives only the semantic
information without any seatity or licensing mechanism. Additional security, digital rights management
or licensing methods are implementation specific and left unspecified.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:810f 276

Context in which this element is used: As a parameter of the widget element.
Content model: Number.
Occurrenes: Zero or one.

Example of Usage: Application valid until 12.31.2011 12am.

1 <widget xmlIns="http://www.w3.org/ns/widgets"

2 xmins:webinos="http://www.webinos.org/webinosapplication"
3 webinos:validuntil="1325332800000">

4 <content src="widg et.html"/>

5 </widget>

The copyrestricted element

Adding the copyrestricted element to the configuration document indicates that copy, export or
installation of the application on another device using webinos application sharing features is forbidden.
It is possible to allow copies on devices belonging to the same personal zone as the device where the
application was installed at first, using tihestrictedto attribute with the value 'personatone’. If the
element is absent no restrictions are appliadd exporting the application to the file system and
installing it on another device is possible if the WRT provides means for exporting applications. The
information provided by thecopyrestrictedelement gives only the semantic information without any
security or licensing mechanism. Additional security, digital rights management or licensing methods are
implementation specific and left unspecified.

Context in which this element is used: As a child of the widget element.
Content model: None.
OccurrencesZero or one.

Context in which the restrictetb attribute is used: As an attribute of the copgstricted element.
Content model: DOMString.
Occurrences: Zero or one.

Example of Usage: Allowing copies on devices of the same zone

1 <widget xmIns="http://ww w.w3.org/ns/widgets"

2 xmins:webinos="http://www.webinos.org/webinosapplication">

3 <content src="widget.html"/>

4 <webinos:copy - restricted webinos:restricted - to="personal - zone"/>
5 </widget>

Application Interface

In [WidgetAPI] the W3@efines an API to access application specific data defined in the configuration
document as well as a persistence model. This API is used and extended to provide support for the
webinosspecific XML elements defined in this specification.

1 interface Wid get {
2
3 /lwebinos - specific attributes

ﬁweblnos

D3.1: Webinos phase | architecture and components

FP7ICT-20095 257103

page:820f 276

© 00N O b

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24 %;

readonly attribute DOMString
readonly attribute DOMString
readonly attribute DOMString

readonly attribute DOMString

distributor;
distributorEmail;
distributorHref;

versionName;

readonly attribute unsigned long long validfor;
readonly attribute unsigned long long validuntil;

/IWidget standard attributes

readonly attribute DOMString author;

readonly attribute DOMString authorEmail;

readonly attribute DOMString authorHref;

readonly attribute DOMString description;

readonly attribute DOMString id;

readonly attribute DOMString name;

readonly attribute DOMString shortNam e;
readonly attribute Storage preferences;

readonly attribute DOMString version;

readonly attribute unsigned long height;
readonly attribute unsigned long width;

As shown in the Widget object interface desciptiseveral webinespecific attributes are added. The
meaning of each new attribute is described in the following list.

distributor attribute: The distributor attribute provides read only access to the distributor
element's content of the config.xml if al@ble. Otherwise this attribute is NULL.

distributorEmail attribute: The distributorEmail attribute provides read only access to the
distributor's email adress if available. Otherwise this attribute is NULL.

distributorHref attribute: The distributorHrefattribute provides read only access to the
distributor's URI reference if available. Otherwise this attribtue is NULL.

versionName attribute: A human readable version name. If not set in the configuration
document it contains the same value as the verstrbute.

validfor attribute: A numeric value represented in milliseconds that indicates how long the
application can be used before usage should be prohibited.

validuntil attribute: A numeric value represented in milliseconds since midnight of January 1
1970, according to universal time that indicates until when the application can be used before
usage should be prohibited.

The following specification for distributed webinos applications will add more extensions to the Widget
application interface as wWkeas to the Widget packaging and configuration specification which are
described more comprehensively and have their own sections in the document.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:830f276

Distributed Webinos Applications

Webinos allows the creation of multievice or distributed applications h@nly from the execution
environment point of view but also from the deployment and packaging point of view. Webinos allows
developers to design their applications in a way that applications (or only parts of them) can be
automatically or programmaticallgeployed on to other devices, e.g., because they are more suitable
for the execution of the application code because of the application design, the feature access or
because of performance reasons.

The webinos distributed application functionality allowiise packaging of any number of sub
applications, referred to as child applications, within a main webinos application package, referred to as
the parent application. Child applications are also full webinos applications and follow the webinos
application @ckaging specification.

Application code encapsulated in child applications can be code where the developer decides that it
makes sense to create specific application modules for performing certain tasks, the functionalities
provided by the modules can hesed by the parent application and also can be shared between other
applications. Thus, application distribution is not only about outsourcing code to other devices but also
about using functionalities provided by one application across others aswduaeing application logic.

Use Case Examples

1 Smart Text Input:

Using a smartphone as text input device for applications running on a TV set. Here, the smartphone not

only sends kep2 RS&a G2 GKS aYlFAyé¢ | LILX AOFGAZ2Y Sorderito | f a2 2
support the text input. In addition, the outsourced code running on the smartphone may check the text

Ay Llzi Ay 2NRSNI G2 LINBGSyl aSYRAy3 2F dzyySOSaal NB

2 Smart sensors:

Assume that an application wants be informed when remotely available sensor data (real sensor or

any another webinos enable/compatible device) crosses a specific measurement threshold. The
application could check the sensor reading periodically and take some action based on thighiSince

would produce unnecessary traffic and needs the primary application to run continuously, it would be

better to only get a sensor event if the threshold is reached. To achieve this, the application may
outsource a piece of code to the desired sensodevice. The code locally checks the sensor/requested

RFGI dzydAf GKS GKNBakK2fR Aad NBIFIOKSR® ¢KS 2dzia2 dzN
system about this so that the application can perform a specific action.

3 Component sharing:

The Andoid Intent programming paradigm (see http://developer.android.com/reference/
android/content/Intent.ntml) allows easy sharing of application components between other
applications. For example a tiny application is only designed for picking a locationafroap and

tﬂwebmos FPZICT-20095 257103

D3.1: Webinos phase | architecture and components page:840f 276

providing the attached geographic location for the selected map position. Since this task is common
across multiple applications it would be an ideal candidate for cross application sharing of services.
Thus, the application is able to be invakigom other applications and could send back the result to the
calling application. Other possibilities like these borrowed from Android Intents could be provided to
webinos applications by using the application distribution mechanism not only for distgo
applications but also for sharing application features.

Packaging of Distributable Applications

Applications that want to make use of webinos distributed application features have to declare the child
applications which should be made availablereehchild application deployment options can be
considered:

e An application can outsource functionality to the child application for any application specific
reason, on the same device or other device, to be accessible using the webinos discovery service
(if shared functions are declared).

e An application can share functions with other applications to allow reuse of existing code
between multiple applications without allowing access to the whole application but to a
dedicated component.

e An application can pkage multiple child applications in one application package in order to
ship and install multiple applications at once.

Application META Data

Content

Main App Child App Child App Child App
Package Package 1 Package ... Package x

Configuration and Deployment META Data

Runtime and Execution META Data

To declare code as being a child applicattaio steps are needed:
1. Package the components to make them distributable.

2. Declare thos components as being distributable.

‘ﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:850f276

Packaging a child application as a distributable application works exactly the same way as packaging a
full webinos application. Thus, a child application could be as comigmias a full webinos application

but with a dedicated small single purpose. Applications which do not declare any child application do
not need any distributed application related processing by the WRT. They will be installed as described
in [Widgets].

Application META Data

Content

Package 1 Packagex

Configuration and Deployment META Data

Runtime and Execution META Data

|

v v
|
s 9
9
: g
& #
. . Child Child
Child App Child App L o
Packiss 1 Pkt Application Application
g 80 < Package X Package 1
Note: In the current release webinos, supports only pre - defined child applications
whi ch ar e avail abl e i n t he parentds application packag
installation. Future versions may support dynamic creation of application packages

during application runtime by providing appropriate APIs. Both the parent and child
applications must be signed by the same authority.

Packaged child applications must be placed in the webinaSS OA FA O WO2YLR ySheliaQ F2i
f20F0SR Ay GKS NR20G FT2ftRSNJ 2F (KS LI NBydQa I LLXAO

Exemplary application structure:

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:86 of 276

e root
config.xml
app.html
icon.png
Scripts
A app.js
o Styles
A small.css
A big.css
o Components
A childl.wgt
A child2.wgt
A child3.wgt

O O O ©

Application Installation on mult iple devices

Automatic Deployment

During installation of a parent application its child applications, if any, can be automatically installed on
the same device as the parent application. The WRT may provide the possibility to also install child
applicatics on other devices if not prohibited by the child application definition in the configuration file
(config.xml).

The child application that should be installed on other devices must provide a child element in the
FLILX AOF GA2y Qa O2y TwiBtdgdkr thehvklyinosRintirizYoSngtélldhe felitadachild
application. If the element is absent, the related child application will not be automatically deployed.

Example of Usage:

1 <widget xmiIns="http://www.w3.org/ns/widgets"

2 xmins:webinos="ht tp:/lwww.webinos.org/webinosapplication”

3 id=ohttp://exampleapp.org/applo webinos:type="container
4 <webinos:child webinos:install="any">child1.wgt</webinos:child>

5 <webinos:child webinos:install=0local d>child2. wgt </
6 <webinos:child>child3.wgt</webinos:child>

7 </widget>

e Line 3: The application package is defined as type 'container'. This means that no parent
application exists in the application package but, if defined in the manifest, child applications
can beinstalled when the WRT processes the application package, it is a convenience mode for
installing multiple applications using only one package. After the WRT finished processing the
package it can be removed from the device because there is no applicdtaincan be
executed. If no parent and no child applications are defined nothing has to be installed and the
application package can be removed. The type attribute is optional. If the type is set to
‘container' the content element is not evaluated and daabsent. The other way round, if the
container attribute is absent, the content element must be declared in the manifest.

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:87of 276

e Line 45: The install attribute specifies whether a child application should be installed directly
after installing the main applit@n package (set to 'any' or ‘'local’) or not (any other value or
absent). If not set to one of the allowed values, child applications can be installed later using the
webinos Widget API. Before starting installation of a webinos application the WRT tiaescto
if any declared child applications are available. If not the installation process must be cancelled
and the user must be informed about an invalid application packagpstHllis set to 'any' the
WRT must show a native WRT dialog to the userasnimy a set of available devices where the
child application can be installed on to the user. Available devices could be every device of the

dza SNDa LISNa2yl+Ft T2yS 2N 20KSNJ RSOAOSa | 00Saaa

about the child appliation available in the configuration document (e.g., author, title, version,
description,...) to the user based on the application package source and destination device, to
allow the user to double check what will be installed. If 'any' is specified, $he may select

one, more or all available devices for installing the child application. Afterwards the WRT has to
install the application on the selected device as specified in section-Ruatime Application
Deployment. If set to 'local’ the related tdhiapplication must be installed on the same device as
the main application was previously installed. The user does not have to select a target device,
but should be informed that this will install only locally.

e Line 6: Each child application containedtia application package must be advertised using the
child element. Child applications contained in the package but not advertised in the
configuration document are rejected by the WRT and, thus, cannot be automatically installed
during application instadition phase or using the webinos Widget API. Before starting
installation of a webinos application the WRT has to check if any child application declared in
the configuration document is also physically available in the package. If not the installation
process must be cancelled and the user must be informed about an invalid application package.

Note: In future versions more advanced automatic deployment mechanisms may be

introduced which allowing stating a number of filters within the remote - install
element of the configuration document in order to define appropriate devices for

application deployment.

On Request Deployment

Webinos allows remote installation during installation of the parent application and it is also possible to
deploy code on demand at ¢happlication runtime. Webinos provides an application deployment API
using the Widget interface which takes the application ID of the child that should be installed. The
application ID must be specified in the configuration document of the child as iggenif [Widgets].
Following the WebIDL specification for deploying child applications:

1
2 [Callback=FunctionOnly, NolnterfaceObject] interface DeploymentSuccessCallback {
3 /lcalled if a child application was successfully installed
4 [[childl D is the application id which was used during deployChild
5 /lservicelD is the unique application id that can be used to explicitly address
the deployed service within webinos service discovery
6 void onSuccess(in DOMString childID, in DOMString servicelD);
7k
8 [Callback=FunctionOnly, NolnterfaceObject] interface DeploymentErrorCallback {
9 void onError (in DeploymentError error);

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:88o0f 276

10 %

11

12 interface DeploymentError {

13 const unsigned short INSTALLATION_CANCELED_BY_USER =1 01,
14 const unsigned short PERMISSION_DENIED_ERROR = 102;

15 const unsigned short NOT_REACHABLE = 103;

16 const unsigned short UNKNOWN_APPLICATION_ID = 104;

17 const unsigned short ALREADY_INSTALLED = 105;

18 const unsigne d short INSTALLATION_ERROR_OTHER = 106;

19 readonly attribute unsigned short code;

20 readonly attribute DOMString applicationID;

21}

22

23 interface Widget {

24 //IDeploys a child application known to the WRT through the definition in
the application s manifest

25 /ffile on another device. If local = false or not specified the WRT has to

provide a list of available

26 /ldevices to the user where the application should be installed on, if

local = true the WRT has to

27 /linstall the selected child on the same device as the API is bound to.

28 void deployChild(in DeploymentSuccessCallback onSuccess, in
DeploymentErrorCallback onError, in DOMString childApplicationID, in optional boolean
local);

29}

Toinstall a child on a selected remote device the webinos device discovery API can be used to find
available Widget API services on other devices where deployChild can be used remotely.

Exposing Application Functionalities as Service to other Applications

As introduced in the beginning of this sectjomebinos applicatios may share functionalities across
other applications. To make functions available to others the shared element containing a number of
sharedfunction and shareéhpi elements must be addea tthe application's configuration document.

The content of the sharetlinction element must be davaScriptunction defined in thelJavaScrippart

of the application which will be accessible to other applications using webinos discovery services and
searding for services with the type defined in the id attribute of the widget element. To group functions
and allow exposing of multiple APIs at the same time the shaptelement can be used. The shared

api element must have an apame attribute which unigely identifies the exposed API. The service can
then be instantiated by using the webinos discovery service while using theaapm as input
parameter for the service type of the service that should be discovered.

Example of Usage:

1 <widget xmIns="http Ilwww.w3.org/ns/widgets"

2 xmins:webinos="http://www.webinos.org/webinosapplication"

3 id="http://lexampleapp.org/appl">

4 <webinos:shared>

5 <webinos:shared - api api - name="http://www.w3.org/ns/api - perms/geolocation">
6 < webinos:shared - function>watchPosition</webinos:shared - function>

7 <webinos:shared - function>getCurrentPosition</webinos:shared - function>

8 <webinos:shared - function>clearWatch</webinos:shared - function>

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:890f 276
9 </webinos:shared - api>

10 <webinos:shared - function>exampleFuntion</webinos:shared - function>

11 </webinos:shared>

12 <content src="widget.html|"/>

13 </widget>

The visibility of the shared functions can be restricted to be only accessible by a parent appliaati
child application or an application running in the same personal zone. To define this, the visibility
attribute of the shareefunction element can be used. For example:

<webinos:shared -f unct i on visibility=0oparent o>f unc-function>1 </ webi no:
allows only a parent application to access functionl.

<webinos:shared -f unction visibility=0chil do>f un c-finagion2 &glbwsebi nos: sha
only a child application to access function2.

<webinos:shared -f uncti on visibilit-ysoperbsanat i ongSskarede-bi no

function> allows only applications running in the same personal zone as the service
application to access function3.

To define whether the service is permanently available (always running) or only after the application
was started by the user orsing the Applauncher API the available attribute of the shared element can
be used. If it is set to 'permanent' the application is always running, thus, the exposed functions can be
found by using the discovery API at any time the hosting device is cauhesil other values or the
absent of the attribute results in unavailability of the service unless the application that exposes the
service functions is started.

1 <widget xmIns="http://www.w3.org/ns/widgets"
xmins:webinos="http://www.webinos.org/we binosapplication”
id="http://exampleapp.org/appl">

<webinos:shared available="permanent">

</webinos:shared>
<content src="widget.html"/>
</widget>

2
3
4
5
6
7
8
To use functions exposed by webinos applications areefse to the application is needed. To get a
reference to an object that provides access to the exposed functions the webavasScriptliscovery

API can be used while providing the query with the unique identifier of the API or application. The object
returned by the webinos runtime is enriched with the Widget interface containing the application name,
description, author, and version name beside of the features provided by the queried interface. For
example accessing function 1 from the above examplelevimwavaScriptook like:

function showMap(location){
/ldoing some logic

}

1

2

3

4

5 function successCB(myLocationService) {

6 alert('Service ' + myLocationService.displayName + ' ready to use’);
7

8

9

/linvok ing a function exposed by the application
myLocationService.webinos.extensions.getCurrentPosition(showMap);
10 }
11
12 function successCB2(myservice) {
13 alert('Service ' + object.displayName + ' ready to use');

14

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:900f 276
15 /linvoking a function exposed by the application

16 myservice.webinos.extensions.exampleFuntion();

17 }

18

19 window.webinos.findServices({api:'http://www.w3.org/ns/api - perms/geolocation'},
{onFound:successCB});

20 window.webinos.findSer vices({api:'http://exampleapp.org/appl,

{onFound:successCB2});

The actual functionality, the signature of the functions as well as the function names of the exposed
functions must be known to the developer. Ansantic description of the functions behaviour is out of
scope of the specification. As you can see in the above example the default name space where an API is
attached to in the returned object is webinos.extensions. Each exposed function is availaglehigsin

prefix. If it is needed to make the exposed functions available under a specific path then this can be
optionally defined using the ajpiath attribute of the shareehpi element (e.g., if the application exposes

a well known API, such as geolocatithat has a defined way of accessing it).

Example of Usage: Defining an API path for an exposed API

1 <widget xmIns="http://www.w3.org/ns/widgets"
2 xmins:webinos="http://www.webinos.org/webinosapplication"
3 id="http://exampleapp.org/appl">

4 <webinos:shared>

5 <webinos:shared -api api - name="http://www.w3.org/ns/api -
perms/geolocation” api - path="window.navigator.geolocation">

6 <webinos:shared - function>watchPosition</webinos:shared - function>

7 <webinos:shared - function>getCurrentPosition</webinos:shared - function>

8 <webinos:shared - function>clearWatch</webinos:shared - function>

9 </webinos:shared - api>
10 </webinos:shared>
11 <content src="widget.html"/>

12 </widget>

Using the above example makes the API available under mylLocationService.navigator.
geolocation.getCurrentPosition() instead of myLocationService.webinos.extengiet@urrentPosition
(showMap) when the agpath is not declared.

Interfacing between Child and Pare#tpplications

Since webinos supports a distributed application design the possibility of communication between
application parts must be assured by the system. Webinos supports this by providing information about
deployed child applications. As introducedthe previous section webinos provides a unique service 1D
for deployed child applications. This service ID can either be used for instantiating a remote binding to
the child application in order to use exposed functions (if any) or it can be used toelynigddress an
application within the webinos event API. Thus, a parent application can communicate with its child
applications.

For the other way around, to let the child application know the unique identity of its parent application,
the child applicattn can be explicitly informed about the parent's identifier. Thus, after the parent
receives a success callback it should instantiate the client and call a function which takes the parent's
identifier using the getServiceld function from the ServiceDisgoA&®l. An exemplary flow could be:

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:910f 276

1

2 function bindcallback(Service service){

3
service.setParent(window.webinos.discovery.getServiceld("http://www.webinos.org/webino
sapplication™));

4}

5

6 function onError(in DeploymentError error){

7 alert(error.code);

8%

9
10 function onSuccess(in DOMString childID, in DOMString servicelD){

11 var service = window.webinos.discovery.createService();

12 service.bind({onBind:bindcallback},childID);

13}

14

15 window.widget.deploy Child(onSuccess, onError, "http://www.exampleapp.org/appl");

Hosted Webinos Applications

Apart from supporting installable applications, webinos supports the execution of hodted
applications which does not require a permanent installation. Hostgaiegtions can also make use of
webinosspecific functionalities if the needed features are declared in the related application manifest.
To attach metadata and configuration data to hosted applications, the W3C packaging and configuration
is extended. Therc attribute of the content element in the application configuration document of a
widget file (.wgt) is allowed to point to an absolute path outside of the application package. In this case
there is no need to include any other content in the packageibis still allowed. Thus, mixing local
installed content and remote content is possible.

1 <widget xmins="http://www.w3.org/ns/widgets">
2 <content src="http://www.hostedapps.com/hostedAppl.html"/>
3 </widget>

Making the hosted application availabie the user works the same as installing a packaged webinos
Web application. A .wgt package file is provided to the WRT and processed. If the WRT detects that an
application is a hosted application the WRT has to add links to the application in ordekéothemn
accessible to the user. This, for example, can be done by placing the referenced application icon in an
application gallery or by maintaining a bookmark list. The WRT has to inform the user about
unavailability of a hosted application if there is mternet connection available.

In addition to the absolute path of the start document of a hosted application the scope of the
application must be defined using the access element in order to allow access to needed documents and
to apply related policies

The access element is defined in the Widget Access Request Policy [WARP] which is applied for hosted
applications.

Example of UsageéApplication is defined using a root path

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:92of 276

1 <widget xmins="http://www.w3.org/ns/widgets">

2 <content src="http://www.hos tedapps.com/hostedAppl/run.html"/>
3 <access origin="http://www.hostedapps.com/hostedAppl/'/>
4 </widget>

Example of UsageApplication is defined using absolute paths to the applications documents

1 <widget xmins="http://www.w3.org/ns/widgets">

2 <co ntent src="http://www.hostedapps.com/hostedApp2/run.html"/>

3 <access origin="http://www.hostedapps.com/hostedApp2/run.html"/>

4 <access origin="http://www.hostedapps.com/hostedApp2/style.css"/>

5 <access origin="http://www.hostedapps.com/hostedApp2/ main.js"/>
6 </widget>

Formal Specification Webinos Web Runtime Environment

This section specifies a number of functional and non functional requirements related to the WRT itself.
This includes how webinos applications are shared between devices, hoapghieation life cycle is
handled, how webinos applications can be installed on WRTs, and which Web technologies must be
supported by webinos WRTSs in order to define a common set of available functionality.

Inter -Runtime Application Deployment

Webinos povides the ability to exchange webinos applications between devices including export of
applications to the file system to be manually installed on another device and automatic installation
using provided WRT functionalities. This includes whole applicaackages as well as child application
packages which are included in a main application package. If a WRT is asked by the user to install a
select application on another device the WRT has to provided a meaningful Ul for selecting a target
device whichncludes, e.g, discovery of nearby devices or of devices in the same personal zone.

For installing application on other devices within webinos the following events are defined and must be
supported by the WRT. The same mechanism is applied if an appli¢datioemote deployment is
selected using thelavaScripWWidget API for code deployment or the automatic deployment during
application installation time is applied.

Requesting a Remote Installation on another device:

Event type must behttp://webinos.org/events/application/requesinstallation
Event payload must be a JSON object with following attributes:

1{
2 name: [the name of the application that should be remotely install ed]
3 description: [the description of the application that should be remotely
installed]
4 version: [the version of the application that should be remotely installed]
5 author: [the author of the application that should be remotely installe d]

6 id: [the application ID of the application that should be remotely installed]

7 size: [the size of the application package in number of bytes]

8 uri: [optional, an URI where the WRT that is requested to install an
application can retrie ve the application code]

http://webinos.org/events/application/request-installation

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:930f 276

9 payloadinstallation: [optional, TRUE or FALSE while true means that an
application transmission using the webinos event mechanism is requested, e.g, if an
uri cannot be provided]

10 }

Answer to a remote installation request

Event type must behttp://webinos.org/events/application/requesinstallationresponse
Event payload must be a JSON object with following attributes:

1

2 payloadl nstallation: [optional, TRUE if an application transmission using the
webinos event mechanism is accepted]

3 code: [optional if payloadinstallation is used, error code as specified in the

webinos widget specification extension or 1 for a successful ins tallation]
4 id: [the application ID of the application that should be remotely installed]
5 uniquelD: [optional if payloadinstallation is used, a unique id of the

application that represents exactly this application installation which can be used
for service discovery or remote application launch]
6}

Sending application using payload:

Event type must be:http://webinos.org/events/application/payloadnstalation?id=[application id,
must be the same as previously requested in reguestallation otherwise the event must be dropped]
Event payload: [the binary data of the application]

After installation another requesnstallationresponse must be sent tdé¢ initiating device.

Application Life Cycle

Webinos applications can be made available through a number of different deployment methods
including installation vi&Veb sites, application stores, file system, other webifNgeb runtimes, simple
application sharing and application advertisement, and execution of hosted applications (no
installation). Upon installation of a webinos application package,Whab runtime must process the
package as specified in the webinos application packaging specificatioitioAalty a webinosweb
runtime must implement the following requirements.

WRTO05: The WRT MUST sent a User Agent Identification containing vendor, name, version
of WRT with each HTTP/HTTPS request to be used for identifying available features
provided by the WRT.

WRTO06: If possible the webinos WRT MUST catch content which is of MIME type
application/widget in order to install the application or execute the application if
already installed and up to date.

WRTO07: If possible the webinos WRT MUST catch th e invocation of files with a .wgt
extension in order to install the application or execute the application if already
installed and up to date.

WRT08: The WRT MAY check the applications configuration document for compatibility
with the features provided by the runtime.

http://webinos.org/events/application/request-installation-response
http://webinos.org/events/application/payload-installation?id=%5bapplication

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:940f 276

WRT09: The WRT MUST provide means to install locally available applications on
another device which can be selected by the user in conformance with section 2 of this
specification.

WRT10: The WRT MUST provide a list of application avalil able to the user for local
installation or remote usage.

WRT11: The WRT MUST delete all data specific to an application if the application is
uninstalled. This includes the un - installation of any child applications if they are
depended on the parent appl ication.

WRT12: The WRT MUST use secure storage for webinos applications that are marked as
copy protected. This should not allow to view, export, modify, or any other access of
the application by other applications or the user (WAC).

WRT13: The WRT MUBT use encrypted storage for webinos applications in case that
external or general accessible storage space is used (WAC) for storing application
data.

Notify Widgets to Web Browsers

It is possible to notify the availability of widgets to Web browsersgishe HTML <link> element in
commonWeb sites. Thus, common Web Browsers may show the availability of installable applications
to the user including the possibility of installing them into the system. In advance, the browser should
check if a Widget haneli, e.g., a webinos WRT, is registered in the system. The <link> element's type
attribute must be set to "application/widget" to define the MIME type of the linked resource.tiflee
attribute should be set to the widgets title. Theef attribute must cantain the link to the application
package. The link type defined by the attribute must be set to "alternate".

1 <link rel="alternate"

2 type="application/widget"

3 title="Application Title"

4 href="http://www.applicationhost.com/application.wg t">
5 </link>

Life Cycle API

Webinos provides some APIs to allow developers to manage their application's life cycle during
application execution. While the application itself cannot influence its execution life cycle status
Webinos allows for registeringpllbacks in case the application will be destroyed and can't be resumed,

will go to background/foreground or will be stopped/started again or resumed.

1 interface NotifySuccessCallback{

2

3 /ICalled if an event was accepted by the user. If provid ed, the notification id
is passed in to link the success to a specific event

4 onSuccess(in DOMString id);

5}

6

7 interface Widget {

8

9 //allows an application to trigger calling destroy from the runtime
10 void exit();

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:95o0f 276
11
12 /s ends the application to background if possible so that it is not visible to

the user anymore

13 //if possible by the platform the application execution goes on

14 void hide();

15

16 //asks the WRT wheather the application is currently hidden (not visible to the
user) or not

17 //if the application is hidden it may notify an event to the user using notify

18 boolean isHidden();

19

20 /[Triggers the WRT to notify occurrence of an event, as described using the
parameters, to the user

21 /IThe user can click the event. If the application is in background and the

user accepted the event

22 /I, e.g., by clicking on it, the application must be brought back to
foreground. The notify success
23 /lcallback is then called after onF oreground was called.

24 void notify(in NotifySuccessCallback onSuccess, in NotifyErrorCallback onError,

in DOMString title, in optional DOMString shortDescription, in optional DOMString id,

in optional DOMString icon);

25

26 /[To cancel a previou s notify because it is updated or expired (if ongoing /
not clicked by the user)

27 void cancelNotify(in DOMString id);

28

29 /ICallback function which is called if the application will be shut down by the

WRT. All application memory

30 llassi gned to the application will be freed after returning out of this
function.

31 void onDestroy();

32

33 /ICallback function which is called after the application was put to
background, e.g., another application

34 /lgoes to foreground and the a pplication is not visible any more. After calling

onBackground the application

35 /lis still running but not visible anymore.

36 void onBackground();

37

38 /ICallback function which is called if the application goes to foreground after
previou sly going to background.

39 void onForeground();

40

41 //Callback function which is called if application execution is stopped by the

WRT.

42 void onStop();

43

44 //Callback function which is called if application execution is continued a fter

previously interrupted.
45 void onStart();
46

a7},

Application Update

[WidgetUpdate] defines how packagatleb applications (Widgets) can be updated over http. For
hosted Web applications without any content in the application package thereasnaed for local

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:96 of 276

update checks. All updates are applied directly remotely on the hod®¥agserver and locally applied
at the next execution of the application.

The webinos WRT MUST be capable of updating webinos application packages as defined in
W3C Widget Updates over HTTP [WidgetUpdate].

Child applications may also be updated using [WidgetUpdate]. Another option for canitstaking
GKS OKAfR LI AOIGAR2Y HKAOK A& AYAGAFIGSR o0& AlGQ&
[WidgetUpdatd. Here, the new version of the application that should bénstalled must be different

from the version currently installed. Otherwise its rejected.
Application deinstallation

The WRT must provide functionalities to permanently remove applications tliendevice on demand

of the user. It may appear the chifitpplications on other devices become nfumctional without their
parent application. The developer can declare this within the configuration document in the child
element. If the optional attribud parentneededis set to true the WRT has to store the application
instance IDs provided by the remote installation process. These IDs must be used to request de
installation on remote devices in case the parent application is deleted.

Example of Usage:

1 <widget xmIns="http://www.w3.0rg/ns/widgets"
2 xmins:webinos="http://www.webinos.org/webinosapplication"

3 id=0ohttp://exampleapp.org/ applo webinos:type="container
4 <webinos:child webinos: parentneeded=0trueodo>child2. w
5 </ widget>

Events for remote denstallation
Event type must behttp://webinos.org/events/application/requestdeinstallation
Event payload must be a JSON object with followinghaiteis:

1

2 id: [the application ID of the application that should be deleted]

3 uniquelD: [the unique instance id of the application that represents exactly

this application installation]

4}

Event type must be: http://webinos.org/events/application/request - deinstallation -
response

Event payload must be a JSON object with following attributes:

1

2 code: [error code as specified in the DeploymentError of th e webinos widget
specification or 1 in case of successfull de - installation]

3 id: [the application ID of the application that should be deleted]

4 uniquelD: [the unique instance id of the application that represents exactly

this application install ation]

5}

In case a remote dmmstallation was not successful the WRT has to inform the user about this and about
that a manual deanstallation may be needed.

Automatic execution of Applications

http://webinos.org/events/application/request-deinstallation
http://webinos.org/events/application/request-deinstallation-response
http://webinos.org/events/application/request-deinstallation-response

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:97 of 276

Beside user driven application execution, webinos appboatican be automatically initiated by events
coming from webinos itself or from other applications. Webinos WRT allows registering for event types
which triggers the execution of the application. Events for automatic execution can be application
specific mes or predefine webinos events. Subscription to application execution events can be made
programmatically using the webinos Event API and described using a new webinos element as child of
the <content> element in the applications configuration document.

Example of UsageDescriptive registration for application execution events

1 <widget xmlIns="http://www.w3.org/ns/widgets"
xmins:webinos="http://www.webinos.org/webinosapplication" webinos:type="background">

2 <content src="http://www.hostedapps.com/hoste dApp2/run.js"/ >
3 <webinos:start>http://webinos.org/events/core/BOOT_UP_COMPLETED</webinos:start>
4

<webinos:start>http://www.hostedapps.com/hostedApp2/eventtypes/eventl</webinos:start>
5 </content>
6 </widget>

Predefined Events that must beguorted by the WRT:

http://webinos.org/events/core/BOOT_UP_COMPLETED
If the device and the WRT is ready to execute applications the WRT must auto start applications
registered to this event.

Applications without Ul

Webinos application can be executed in a no user interaction (Ul) mode which means that the
application is invisible to the user and the user cannot directly interact with the application. After
starting a background applicationvitill be executed and is responsive to potential incoming request as
long as the application is running (not stopped by the user or by the service itself). To express that an
application is a no Ul application typgpe attribute is added to the <widget> ehent of the
application's configuration document. tpe is 'background' the application is marked as no Ul /
background application. In any other cases the application is handled as normal application. The WRT
must provide means to manage background lagations by the user. E.g., start a background
application, show running background applications and terminate background applications.

Example of UsageéDeclaring an application as background application

1 <widget xmiIns="http://www.w3.org/ns/widgets"

xml ns:webinos="http://www.webinos.org/webinosapplication" webinos:type="background">
2 <content src="http://www.hostedapps.com/hostedApp2/run.js"/>

3 </widget>

Extensions

The webinos runtime must support the NPAPI standard. The specification to build plBgiRs and a
NPAPI compliant runtime is out of scope of this document. The NPARhplagd a NPAPI cogmt
runtime are specified in [NPABrowserSideAPI] [NPAPPIluginSideAPI], andiNpruntimg.

http://webinos.org/events/core/BOOT_UP_COMPLETED

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:980f 276

This specification covers how to declare a NfPAR}in as an extension in the application manifest, how
the installation should be handled by the webinos runtime and how functions of an extension can be
made available to other applications. Security aspects of extensions are cov>3rb

Bundeling extensions to an application package allows us to manage them in the same way as regular
applications (cfLCGASPISMB112). Furhtermore it allows us to expose functions of the extension using
the same mechansims as for exposing and sharing functions of applications and featur€&DR
ISMB009).

Integrating a NPAPI plug -in into an application package

Webinos allows you to integrate a NPAPI gilugnto your application packge. The extension is ¢h
distributed with the application itself. The installation of the pings handled by the webinos platform.

In order to enable the runtime to handle the installation of the pingsome metadata has to be
specified inside the gpication manifest including the name, location of the binary files, and supported
platforms. This meta data is needed for the lifecylemanagement of theiplug

The following examplélustrateshow an application description making use of this featuaklike.

1 <webinos:plugins>

2 <webinos:plugin>

3 <webinos:name>foo</webinos:name>

4 <webinos:platforms>

5 <webinos:platform>

6 <webinos:name>win32</webinos:name>

7 <webinos:path>plugi ns/win32/foo.dll</webinos:name>

8 </webinos:platform>

9 <webinos:platform>
10 <webinos:name>linux</webinos:name>
11 <webinos:path>plugins/linux/foo.o</webinos:name>
12 </webinos:platform >
13 </platforms>

14 </webinos:plugin>
15 </webinos:plugins>

The plugins element

The plugins element lists all phigs, which are part of the application package. An application package
can contain more than one pltig.

[8] plugins ERlugins
sesl €| plugin EPlugin

Context in which tts element is used: As a child of the widget element.

http://dev.webinos.org/redmine/projects/t3-5/wiki/Deliverable_Specifications_Extension_Handling
http://dev.webinos.org/redmine/projects/wp2-2/wiki/DeliverableVersionAll#LC-ASP-ISMB-112
http://dev.webinos.org/redmine/projects/wp2-2/wiki/DeliverableVersionAll#LC-DWP-ISMB-009
http://dev.webinos.org/redmine/projects/wp2-2/wiki/DeliverableVersionAll#LC-DWP-ISMB-009

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:990f 276

Content model: complex type of tPlugins
Sequence: zero or one

The complex type of tPlugins is defined as followed

1 <complexType name="tPlugins">

2 <sequence>

3 <element name="plugin" type=" webinos:tPlugin"></element>
4 </sequence>

5 </complexType>

The plugin element

The plugin element defines the information about a single {itug

EPlugin EPlatFormm
[8] name skring 8] name [1..1] skring
1.1 - [g] platforms tPlatform 11 [8] path [1..1] skring

Context in which this element is used: As a child of the plugins element.
Content model: complex type liRyin

Segeunce: one ore many

Attributes: none

The complex type for a tPlugin is defined as followed:

1 <complexType name="tPlugin">

2 <sequence minOccurs="1" maxOccurs="1">

3 <element name="name" type="string"></element>

4 <seguence min Occurs="1" maxOccurs="unbounded">

5 <element name="platforms" type="webinos:tPlatform"></element>
6 </sequence>

7 </sequence>

8 </complexType>

name element of plugin:
Defines the name of the plugin.

Context in which this element issed: As a child of a plugin element.
Content model: string

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:1000f 276

Occurrences: one
Attributes: none

platforms element of plugin
The platforms element is the container for the defintion of the supported platforms by theiplug

Context in which this element ised: As a child of a plugin element.
Content model: complex type tPlatforms

Occurence: one

Attributes: none

The complex type tPlatforms is defined as followed:

<complexType name="tPlatforms">
<sequence>
<element name="platform " type="webinos:tPlatform"></element>
</sequence>
</complexType>

a b wNPE

platform element of platforms
Defines a supported platform for plugin inlcuding the platform specific binary.

Context in which this element is used: As a child of the platfozlement.
Content model: complex type tPlatforms

Occurence: one or many

Attributes: none

The complex type tPlatform is defined as followed:

1 <complexType name="tPlatform">
2 <sequence minOccurs="1" maxOccurs="1">
3 <element name="name" type= "string" minOccurs="1" maxOccurs="1"></element>

4 <element name="path" type="string" minOccurs="1" maxOccurs="1"></element>
5 </sequence>

6 </complexType>

name of platform

Defines the platform name of the binary

Context in which this elemens used: As a child of a platform element.
Content model: String
Sequence: one

path of platform

Defines the path to binary for the specific platform relative to the location of the application manifest.

¢5)webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:1010f 276

Context in which this element is used: As a child pih&orm element.
Content model: String
Sequence: one

XML-Schema for plugn packaging

The following code shows extension specific application meta data in form of a XML schema.

1 <?xml version="1.0" encoding="UTF -8"7>
2 <schema targetNamespace="http:// www.webinos.org/webinosapplication”
elementFormDefault="qualified" xmins="http://www.w3.0rg/2001/XMLSchema"

xmlins:webinos="http://www.webinos.org/webinosapplication">
3 <complexType name="tPlugins">

4 <sequence>
5 <element name=" plugin" type="webinos:tPlugin"></element>
6 </sequence>
7 </complexType>
8 <element name="plugins" type="webinos:tPlugins"></element>
9 <complexType name="tPlugin">
10 <sequence minOccurs="1" maxOccurs="1">
11 <e lement name="name" type="string"></element>
12 <element name="platforms" type="webinos:tPlatform"></element>
13 </sequence>
14

15 </complexType>
16 <complexType name="tPlatform">

17 <sequence minOccurs="1" maxOccurs="1" >

18 <element name="name" type="string" minOccurs="1"
maxOccurs="1"></element>

19 <element name="path" type="string" minOccurs="1"
maxOccurs="1"></element>

20 </sequence>

21 </complexType>

22

23 <complexType name="t Platforms">

24 <sequence>

25 <element name="platform" type="webinos:tPlatform"></element>

26 </sequence>

27 </complexType>
28 </schema>

Remote usage of plug-in functions

The remote usage of the pldg can be enabled by ldding aJavaScriptwvrapper around the plugn
itself and exposing the functionality as describedExkposing in Application Functionalities as Service to
other Application

The following exampldlustrateshow a NPAPI method is being made available to other applications
running in the same personal zone.

Application manifest

http://dev.webinos.org/redmine/projects/wp3-1/wiki/Spec_-_Foundations#Exposing-Application-Functionalities-as-Service-to-other-Applications
http://dev.webinos.org/redmine/projects/wp3-1/wiki/Spec_-_Foundations#Exposing-Application-Functionalities-as-Service-to-other-Applications

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:1020f 276

1 <widget xmlns="http Jlwww.w3.org/ns/widgets"
xmlins:webinos="http://www.webinos.org/webinosapplication”
id="http://fexampleapp.org/appl">

2 <content src="widget.html"/>

3 <webinos:copy - restricted webinos:restricted - to="personal - zone"/>
4 <webinos:shared>
5 <webinos:shared - function visibility="personal -
zone">myExposedPluginFunction</webinos:shared - function>
6 </webinos:shared>
7 <webinos:plugins>
8 <webinos:plugin>
9 <webinos:name>foo</webinos:name>
10 <webinos:platforms>
11 <webinos:platform>
12 <webinos:name>linux</webinos:name>
13 <webinos:path>plugins/meego/foo.so</webinos:name>
14 </webinos:platform>
15 </platforms>
16 </webinos:plugin>

17 </webinos:plugins>
18 </widget>

The application packages conatins a NPAPFipleglled foo (cf. line 9), which is supported on linux (cf.
line 12). Furthermore the application exposedaaaScriptunction callled myExmedPluginFunction (cf.
line 5). ThislavaScripfunction is wrapper function for an exposed NPAPI function as shown in the
following code snipplet.

content.html

1 <html>
2 <head>
3 </head>
4 <body>
5 <script>
6 var myP lugin;
7 if (navigator.mimeTypes[application/webinos - extension -foo"] &&
navigator.mimeTypes|["application/webinos - extension - foo"].enabledPlugin != null){
8 document.write('<embed type="application/webinos - extension - foo"
i d="plugin">");
9 myPlugin = document.getElementByld('plugin’);
10 telsef{
11 myPlugin = null;
12 }
13 function myExposedPluginFunction(){
14 if(myPlugin != null){
15 return myPlugin.getSomething();
16 telse{
17 return throw "method not supported";
18 }
19 }
20 </script>
21 </body>

22 </html>

¢5}webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:1030f 276

In line 7 the application checks, ifpdugin exists for a speicifc MIME type. If so, an embed object is
added to the DOM (cf. line 8), which makes it possible to call methods of a NPAPI plugiayesaript

In line 15 the exposed NPAPI method doSomenting is called. If the myExposedRktgnPuis called
and the MIMEType is not supported, the method throws an error (cf. line 17).

Installation and execution of an extension

During the installion process of the application, the webinos runtime determines the correct NPAPI
binary for the phtform and stores it on the local machine, so that rendering engine can iniate the plugin,
when executing the application.

Since NPAPI pltigs are indified by the supporting MIME/pe inside aVeb rendering engine, the
webinos runtime must be able to assate each NPAPI phig to a webinos application and make only
those installed plugns available which are associated to an application.

Security considerations

We recommend that only applications using plagare only executed if they have been signend
approved by some entity. The signing process is defingdRr3.5

Web Technologies

Note: The following section is preliminary and may be subject to change in future
versions of the specification.

A Web runtime which is able to render webinos applications and wants to claim to be compliant to the
webinos specification must suppaditie following Web technologies whereas the concrete mandaty
version and feature set of each one is further defined in the Wholesale Application Community Core
Specification Version 2.0 Section 2 [WACWebTech].

e XML and HTML Markup Language
e JavaScriptlS)

e Cascading Style Sheets (CSS)

e XmlHttpRequest

e Scalable Vectdgraphics (SVG)

Beside of the definition o¥Web technologies to be supported [WACWebTech] defines URI schemes to
allow launching of specific applications. The following URI schemes must be supported by webinos
runtimes:

e "http/https” in order to launch aVeb browser

http://dev.webinos.org/redmine/projects/t3-5/wiki/Deliverable_Specifications_Extension_Handling

¢5)webmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:1040f 276

o "tel"in order to initiate a call

e "sms" in order to send a short message service (SMS) message

e "mmsto" in order to send a multimedia massaging service (MMS) message
e "mailto" in order to send an email message

e "data" in order to directy embed coanht (e.g., dataiimage/jpeg;base64,
19/ AAAQSKZIRGABAQAAA..)

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:1050f 276

Authentication and Identity

The authentication and identity mechanisms within webinos form the critical foundations upon which
the many of the more sophisticated functions are built.

In the preceding sections the concepts of the personal zone (both hub and proxy) have been explained.
In this section the details of the authentication mechanism shall be first gently introduced (in the
conceptual architecture section) then formally specified. IhivéeableD3.5the reasoning behind these
architecture decision and threats to security are discussed in detail.

Within webinos, the authentication arnidentity issues need to be addressed at two distinct levels.

1. Intra webinos authentication: the mechanisms via which users and devices are authenticated by
the personal zone

2. Extra webinos authentication: which describe some utility capability, where tihgopal zone
hub can assist in the authentication against multiple exteivab applications and services,
which are not necessarily webinos based.

We have decided to distinguish these two levels, as within webinos the-lzased authentication
integrates rfectly in the architecture and it meets all the authentication requirements. However, on
the open Internet, strong authentication which involves a third party to prove the identity of a user is
required. Thus different means of authentication will be lemented which can also be used for legally
binding agreements on the Internet.

In addition to that, authentication is done in two steps: first the user is authenticated to at least one of
his devices. Second the device communicates on behalf of the desstifying itself with its public key
and its certificate.

We will deal with intra webinos authentication in this specification. Extra webinos authentication will be
dealt with in phase Il of the webinos project. But before we do so, let us remind oussafitbe roles
and responsibilities of the PZP and PZH, with respect the the authentication and identity problem.

Personal Zone

The personal zone is a conceptual entity, that has meaning to an end user, but from an implementation
perspective is built upfaone (and only one) personal zone hub, and many personal zone proxies.

From end users perspective the personal zone hub has the following qualities:
e Web addressable: the personal zone hub is identified by a unique URI.

e Permanently addressable: the persdrzone hub should be "permanently" addressable on the
open internet. It is presumed to be highly available.

o SEGNOTE: it there fore must be robust to denial of service attacks

http://dev.webinos.org/redmine/projects/wp3-1/wiki/Spec_-_Authentication#Webinos-D35

tﬂwebmos FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:1060f 276

e Outgoing messages: the personal zone hub becomes the intelligent agent thvehigh all
outgoing webinos messages are proxied, if there is no fe@eer communication setp
between two devices after authentication

e Incoming messages: the personal zone hub is the entity to which all incoming messages are
directed, and therefore thes responsibility for directing the messages to the right place.

o in the cases where devices have-gpta peefto-peer connection, incoming traffic is
only routed through the PZH during authentication

e Secure intermediary: the personal zone hub is the eser's policy enforcement point. It should
be aware of and police the end user preferences, with respect to any security relevant action.

e Secure perimeter: as far as the user is concerned, the personal zone hub is a secure perimeter.
People, devices anapplications that are granted access to the personal zone are presumed to
be trusted.

e Authentication: the personal zone hub is the entity against which all devices, users, applications
must authenticate (identify) themselves in order to be granted "irgene" rights

Each device in the personal zone has its own unique public/private cryptographic key pair. Once the user
is authenticated to a device, the device reveals access to the secure storage which keeps the private key
in a protected environment. ThBZP is the only entity which can access the private key. The PZP uses
the private key for mutual authentication within the zone and across zones, and for integrity and
confidentiality of communication between devices.

Personal Zone Hub

The personal zonbub is a server based entity that orchestrates the behaviour all of the personal zone
proxies, in order to deliver the functionality expected from the personal zone hub.

The PZH acts as a master repository for critical data that must be synchronised betwieeand
proxies, in order to deliver the required dime and offline functionality.

When being messaged from devices on the open internet, the PZH acts like a DNS server, finding the
most relevant end device application, to which the incoming webinessages should be routed.

The PZH acts as certification authority (CA) for the entire zone. Each device has a certificate which is
issued by the PZH once the device joins the zone.

Personal Zone Proxy

An application rarely interacts with the PZH direcilymost cases the application interacts with a PZH
via the PZP.

The PZP therefore intercepts and either directly deals with or forwards the authentication requests.

The PZP intercepts and forwards all outgoing messages.

¢ﬂwebm°5 FP7ICT-20095 257103

D3.1: Webinos phase | architecture and components page:107of 276

The PZP receives and forwards driraloming messages

The PZP synchronises key information with the PZH to allow it to perform its functions. This data
includes

o critical user identity information (to assist discovery) e.g. email, first name, last name etc
e webinos PZH authentication tokens

e extra webinos, 3rd party service authentication tokens (webinos Phase 1)
o identity tokens for trusted devices

e identity tokens for trusted applications

e identity tokens for trusted people

e identity tokens for services that can be accessed from other people

o all policy description files

e context data

e session data

e application data

The webinogelated tokens are represented by certificates. Tokens for-@ndy services are
authorisation tokens which are issued by an identity provider. Synchronisation is perfasrsmbn as a
PZP established a secure channel with the PZH and whenever data changes while being connected.

Intra webinos authentication

Intra webinos authentication covers all communication within one personal zone or across multiple
personal zones. Audntication is always the same. First the user is authenticated to the device. Second
the device authenticates to one or more other devices. These other devices can be in the same or in
another zone. A device proves its affiliation to a zone by holdingtdicate which is issued by the PZH

of that zone. In addition, the device possesses the private key of the key pair of which the public key is
contained in the certificate.

PZP installation process

The PZP is a fundamental and trusted component of aopatszone. For proper security of the entire
persond zone, we must address the issue of how does the PZP get installed upon the device.

The PZP needs to be obtained from a trusted source. The PZH is the most suitable source as it also hosts
the user datawhich is to be synchronised to the PZP later. On the device which is to be joined to the

