

Deliverable D3.1

FP7-ICT-2009-5 257103

June 2011

D3.1: webinos phase I architecture and

components

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 2 of 276

Project Number : FP7-ICT-2009-5 257103

Project Title : Secure WebOS Application Delivery Environment (webinos)

Deliverable Type : Public

Deliverable Number : D 3.1

Contractual Delivery Date : June, 30
th
, 2011

Actual Date of Delivery : June, 30
th
, 2011

Title of Deliverable : webinos phase I architecture and components

Contributing Work Package : WP 3

Nature of Deliverable : Report

Editor : Fraunhofer FOKUS

Authors : Fraunhofer FOKUS, Deutsche Telekom, ERCIM, University of Oxford,

 Telecom Italia, TNO, BMW F+T, AmbieSense, SonyEricsson., Samsung,

 Antenna Volantis, VisionMobile, NTUA, ISMB, IBBT, Polito, UNICT,

 TUM, DOCOMO, Impleo, Telefonica

Document History

Version Date Author (Partner)
Remarks

0.9 29/06/2011 Fraunhofer FOKUS Initial version created from Wiki

1.0 h 30/06/2011 Fraunhofer FOKUS Updated, Word-formatted version

 FP7-ICT-2009-5 257103

page: 3 of 276 D3.1: Webinos phase I architecture and components

Abstract

This deliverable specifies the architecture and required infrastructure and service components for the first phase

of the webinos project.

The primary areas covered in this document are the webinos foundations, extension handling, authentication,

discovery, messaging, context, security, privileged applications and analytics. These topics are supplemented with

a component overview, a high level network overlay architecture, as well as session and synchronisation handling

decriptions.

In the first part of the deliverable, background information is given about the individual topics, presenting the

lessons learned from the current state of the art, highlighting which existing standards and practices were suitable

for adaptation by webinos and, in those cases where no existing standard covered the requirements of webinos,

which standards and practices were used as a basis on which the webinos specifications were built.

This first part is primarily an information section, allowing readers not directly involved with the webinos project to

follow the reasoning of decisions made in the work package 3 of the webinos project, without having to study, for

example, the underlying use cases, scenarios and requirements from work package 2.

The second part of the deliverable contains the actual architectural specification for the webinos platform. From

an implementation point of view, it should be sufficient to read only sections 4 and 5 of this deliverable and have

all requires information regarding architectural and component specification available, though, without the

background knowledge, this would just provide the "what" without the "why".

Two notes:

1. This document does not describe the webinos platform completelty. It only covers the architecture and its

 components. It is a companion document to the webinos D3.2 and D3.5 deliverables, which cover the

 JavaScript device APIs and the Security Framework, respectively. All three documents together comprise the

 webinos phase I specification.

2. This Word/PDF linear document represents only a snapshot of the specification for the purpose of

 dissemination, archieving, reviewing, delivery and dissemination as a single document. The actual specification

 is located on the webinos redmine/Wiki. That version is the one relevant for the work within the project.

 Due to the close interworking between the specification and the implementation work packages in webinos,

 experience gained about gaps that need to be filled in the specification will be fed back directly into the

 online specification. The Word/PDF document has been exported from the online version and represents

 the status of the specification on June, 30
th
, 2011.

Keyword list:

webinos, specification, architecture, foundations, authentication, discovery, messaging, context,

security, analytics, metrics, network overlay, high level architecture, key architectural components,

session creation

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 4 of 276

Content

1. INTRODUCTION ... 7

2. METHODOLOGY .. 8

Guidelines ... 9

Work Areas .. 10

3. BACKGROUND .. 11

Foundations .. 11

Extensions ... 16

Authentication .. 22

Discovery .. 26

Messaging ... 32

Context .. 34

Security and Privacy ... 36

Privileged Apps .. 38

Analytics ... 51

4. HIGH LEVEL OVERLAY A RCHITECTURE ... 59

Architecture ... 59

Key architectural components .. 64

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 5 of 276

Sessions ... 74

5. SPECIFICATION ... 77

Foundations .. 77

Extensions ... 97

Authentication and Identity .. 105

Discovery .. 128

Messaging ... 155

Context .. 173

Security ... 193

Privilege Apps and Services (Access Control) .. 217

Analytics ... 230

Synchronisation ... 246

6. CONCLUSIONS .. 248

7. GLOSSARY ... 249

Definitions of Stakeholders ... 249

General Definitions .. 250

Acronyms .. 271

8. RESOURCES ... 273

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 6 of 276

Web Applications ... 273

Extensions and Plug-ins .. 273

Authentication .. 274

Security ... 274

Glossary References .. 275

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 7 of 276

1. Introduction

The purpose of the webinos project is to define and deliver an Open Source platform, which will enable

Web applications and services to be used and shared consistently and securely over a broad spectrum of

connected devices.

To achieve this, it is insufficient to limit the specification to APIs to be provided by individual devices to

allow access to device resources, but it is also necessary to define and provide an architecture and

infrastructure to allow applications to run not only on a single device, but also across devices and

domains.

Increasingly users own more connected devices and users are no longer satisfied to handle devices and

applications on an individual basis, but expect applications to keep preferences and status information

synchronized across multiple domains, devices and, if appropriate, applications.

This applies to device features as well. Already many modern TV sets allow the use of smart phones as

input devices, though this is currently handled on a proprietary manner. A modern Web based platform

needs to define and provide functionality to handle such interactions in consistent and, for the

application programmer, easily accessible manner.

Other issues that require services that go beyond the capability of individual devices are the handling of

user authentication cross device events, metrics and application distribution.

In all these cases, it is not sufficient to provide a simple device API, but it is also required to describe the

underlying architecture and service requirements.

The tagline of the webinos project is "Secure Web Operating System Application Delivery Environment",

indicating that security is a significant part of the project. In the specification part of the project, the

handling of security and privacy aspects and the creation and definition of a security architecture was

covered by an individual project task to ensure that the topic is handled adequately.

To cover all areas adequately, the webinos specification consists of three parts:

 D03.1 webinos phase I architecture and components

 D03.2 webinos phase I device, network, and server-side API specifications

 D03.5 webinos phase I security framework

(The numbering is an artefact of the webinos project plan. There are no missing 3.3 and 3.4 deliverables

- the numbers are reserved for an update of the 3.1 and 3.2 deliverables in phase II of the webinos

project.)

The first deliverable (which is this one, D03.1) covers the architecture and required infrastructure and

service components. The intended audience for this deliverable are providers of the webinos platform,

since they will need to provide these components. For application programmers the background

sections may be of interest to get an overview of these components and their interactions, since a good

file://redmine/projects/wp3-1/wiki/Glossary%23Webinos-project

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 8 of 276

understanding of the framework may allow for more efficient use of the system, though an in-depth

knowledge of the internal interfaces and structures is not that useful. This is also one of the reasons to

have the background section of this document separate from the detailed specification section.

The second deliverable (i.e. D03.2) describes the APIs that will be available to a Web application

programmer on a webinos device. The intended audience are application programmers who want to

provide webinos enabled and supported applications and are going to use the APIs. In the

implementation phase of the platform, the audience, of course, also includes the platform providers,

who will provide the APIs.

The third deliverable (i.e. D03.5) describes the security framework for webinos. As security needs to

encompass the full application environment, this covers Web security architecture and services as well

on-device security and policy handling.

All three deliverables together comprise the initial webinos system specification, which will serve as

basis for the development of the open source platform.

Based on the experiences with implementing and using webinos, updated versions of these deliverables

will be published in August 2012.

2. Methodology

The methodology for deriving the specification was based on the waterfall model.

In the initial step, a long list of scenarios and user stories involving a Web application platform were

defined (see also Deliverable 2.1).

From these scenarios and user stories, a sub-set was selected, representing advanced, innovative and

typical usage.

Based on these representative scenarios, which were mainly informal descriptions of applications and

their usage, use cases were derived, which describe the interaction between the actors and the

software in a more formalized way. From these use cases, requirements pertaining to the underlying

platform, and including security requirements, were extracted (see also Deliverable D2.2). This process

ignored requirements that were application specific, unless they implied requirements for the

underlying platform.

Following this phase, the requirements (derived from presumed representative scenarios) were checked

against the original set of scenarios and user stories to ensure that no requirements were missed.

Based on these requirements, together with known requirements from other Web application platform

work performed by project partners (such as W3C, BONDI, WAC or OIPF) the webinos specification was

developed. Since it is unpredictable what features a future application, utilizing the platform, might

require, the set of requirements for a platform can never be complete. However, basing the

requirements on a wide range of innovative scenarios, combined with the experience of the project

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 9 of 276

members and external feedback, should result in a specification that fills the most crucial currently

foreseeable needs and remains open for adaption to future needs.

This anticipated adaptation for future needs will be covered in the webinos project in Phase 2, which will

review, revise and refine the specification in this document. The development of the platform and

applications will serve as proof-of-concept and will provide valuable feedback for Phase 2 enhancement

of the specifications.

Guidelines

When drafting the specification, webinos project members took a number of guidelines into account:

Don't re-invent the wheel

Where solutions in an area already existed and were found valuable and acceptable, these were utilized

and adapted as far as possible and needed. There was a strong bias in the project against innovating for

the sake of innovating. Existing solutions, standards and specifications were referenced and re-used. If

existing solutions were almost sufficient, but not meeting webinos requirements in all details, care was

taken to do only the smallest number of changes, needed to fulfil the requirements.

Consider licensing issues

If available and appropriate, the specifications are based on open standards to avoid the specification

and subsequent implementations to be encumbered by legal and licensing issues, hindering adoption. In

areas where only proprietary standards were available or dominating, care was taken to provide

specifications in a way to allow implementation independently of proprietary solutions, but, if possible,

stay close enough to them to allow easy mapping to such solutions to allow their usage in environments

where these are ubiquitous.

Be secure by design

To avoid the common risk of developing an architecture and a specification solely on functional

requirements and then tagging on security as an afterthought, webinos has a specific task dedicated to

developing a security and policy framework and integrating it into the architecture from the beginning.

Unlike other parts of the specification work package, which operate in two distinct phases, the security

task runs continuously across the project life time to ensure that security and policy concerns can be

addressed quickly and sufficiently.

Be developer friendly

The key for success of a platform is the acceptance by developers. To achieve this, webinos needs to

provide features to allow developers faster, more attractive and more efficient development - of

applications that can communicate and use resources across devices and apps. Whilst current platforms

provide access to local hardware and other resources, they do not provide an infrastructure and

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 10 of 276

significant support for multi-device usage. Communication, cooperation and sharing between apps and

devices currently need to be provided by the developer.

To make life easier for developers, webinos considers not only the API on the device itself (covered in

deliverable 3.2), but also a supporting infrastructure for, among others, user ID management, discovery

(of devices, applications and services), event handling across devices, metrics and context handling.

webinos seeks to provide the developers and service providers with a common non-proprietary

infrastructure enabling or simplifying the use of resources between applications (also across different

developers).

Work Areas

To create the first specification of the webinos platform, based on the requirements and following the

guidelines, fifteen work groups were created initially - tasked to analyze existing solutions, issues and

remaining gaps in respect to the requirements.

As a result of this initial work, some overlap between the areas was detected and the groups were

restructured to avoid duplication of work and unnecessary communication overhead. (As an example:

Whilst the scope and problem space of the groups Application/Service Discovery and Device Discovery

differed, the similarities of these groups were larger and consequently, the two groups were combined.)

Work then continued in ten work areas for which specifications were defined, which led to the Overlay

Network Architecture and the seven specification areas contained in this deliverable. (For better

structuring of the deliverable, two of the smaller areas, Web application packaging/handling and

Extension Handling were combined in the Foundations section; Privileged Applications became part of

the Policy chapter, reducing the ten work areas to eight sections of the specification.)

The purpose of splitting the effort into different, mostly disjunct, work areas was to be able to work in

small teams, often based in only one or two companies, to allow fast and efficient work and

communication within the work areas. To avoid the risk of company bias and to ensure the fitting in of

the individual areas into the overall concept of webinos, alignment and "bringing the pieces together"

was assured through regular conference calls, cross-team workings and through final peer review across

the teams.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 11 of 276

3. Background

Foundations

The foundations section is about specifying the technological background of webinos applications,

including application packaging and life-cycle. This also includes functional and non-functional

requirements of webinos Web Run-Time (WRT) environments, e.g., how to pass applications to webinos

WRTs and how to share applications across WRTs.

What's in scope

Foundations define how webinos look like from a technical point of view. In general, it defines the

packaging and configuration of webinos applications as well as the life-cycle, including requirements on

the WRT which are related to application handling and interoperability across WRTs. It also includes how

webinos applications can be packaged for distributed application use cases, including the exposure of

application functions. Thus, applications will be able to share their functionality across distributed

components of an application as well as across other full applications.

What's out of scope

Allowing Web based applications to access device specific features introduces security risks. The

foundations specification does not define the webinos security framework.T. This is done in separate

sections and deliverables, but it includes relations where needed. Also content protection like DRM or

licensing is out of scope.

Webinos applications will be created using Web technologies, e.g., JavaScript, CSS and HTML. To achieve

a good level of interoperability between WRTs, a common set of supported Web technologies is crucial;

but elaborating on Web technologies to be supported by webinos WRTs and defining which features of

which Web technology must be supported is not discussed in the foundations section. Instead, WAC has

done much work here and the outcome is referenced and mandated for webinos WRTs.

Review of State of the Art

In general applications have a central entry point for both, installing and executing, which makes them

easy to transport, install and use. Web technology based applications are commonly hosted on Web

servers, where each document is linked to other documents which are needed for proper rendering.

This approach provides a good mechanism to access an application simply by using an URL. But there is

a lack of descriptive data for all this content (including e.g. JavaScript).meta-data like the author, an

application description or links to contacting the authorauthor, which can be valuable for the user. This

information can be added to native applications like MS Windows executables. In addition, in the Web

there is no means to describe which documents are belonging to an application and are needed for a

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 12 of 276

proper execution. In this section some recent approaches for packaging Web content as a whole

application are described.

Google Web application packaging (.crx)

Chrome Google introduced support for installable hosted and packaged Web applications (stored in .crx

format). The developer has to write a JSON based manifest file (manifest.json) that contains some

metadata about the application. This manifest.json file must then be placed in a .crx file, which basically

is a renamed zip file.

Example of Usage taken from Google Chrome Developer Page [CRX]

 1 {

 2 "name": "Google Mail",

 3 "description": "Read your gmail",

 4 "version ": "1",

 5 "app": {

 6 "urls": [

 7 "*://mail.google.com/mail/",

 8 "*://www.google.com/mail/"

 9],

10 "launch": {

11 "web_url": "http://mail.google.com/mail/"

12 }

13 },

14 "icons": {

15 "128": "icon_128.png"

16 },

17 "permissions": [

18 "unlimitedStorage",

19 "notifications"

20]

21 }

The JSON example describes the Google Mail Web application as installable hosted application, the

application URLs pointing to remote locations, using the web_url key. In addition to the provided

metadata, HTML5 permissions can be requested during installation. If the user clicks a link to a .crx file

within the Chrome Web browser, the application is installed to the Google Chrome application Gallery.

If the developer doesn't want to maintain a server that serves a hosted application or if he wants to

provide the best off-line case experience, he can create a packaged application. To make an application

a fully packaged application the contents are placed in the .crx file and the manifest file must include

these details:

1 "app": {

2 "launch": {

3 "local_path": "main.html"

4 }

5 },

In addition to access to common Web features, installable applications can have access to Google

Chrome's extension APIs, e.g., manipulating context menus or creating background pages. To stimulate

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 13 of 276

the usage of Google's application packaging, Google's Web application store supports .crx files which

can be uploaded to the store using a developer frontend. Afterwards they are search and browse-able in

the store where they can be installed from to the local application Gallery.

Mozilla Web Applications

In early 2011 Mozilla announced the Open Web Apps project [OpenWebApps] which aims to allow

everyone to develop their own Web application store. This also includes the definition of application

packages and the possibility of installing them. Mozilla also uses a JSON based manifest file that includes

human readable and machine readable metadata about the application. Applications are able to "self-

install" using an API call provided by Mozilla Browsers (navigator.apps.install()). Manifest files can be

served as files where the file extension .webapp or via HTTP where the content type application/x-web-

app-manifest-json should be used. Off-line usage is supported through the use of HTML5 AppCache,

while an API to check the online status is provided.

Example of Usage taken from Mozilla Developer Page [OpenWebApps]

 1 {

 2 "version": "1.0",

 3 "name": "MozillaBall ",

 4 "description": "Exciting Open Web development action!",

 5 "icons": {

 6 "16": "/img/icon - 16.png",

 7 "48": "/img/icon - 48.png",

 8 "128": "/img/icon - 128.png"

 9 },

10 "widget": {

11 "path": "/w idget.html",

12 "width": 100,

13 "height": 200

14 },

15 "developer": {

16 "name": "Mozilla Labs",

17 "url": "http://mozillalabs.com"

18 },

19 "installs_allowed_from": [

20 "https://appstore.m ozillalabs.com"

21],

22 "locales": {

23 "es": {

24 "description": "¡Acción abierta emocionante del desarrollo del Web!",

25 "developer": {

26 "url": "http://es.mozillalabs.com/"

27 }

28 },

29 "it": {

30 "description": "Azione aperta emozionante di sviluppo di fotoricettore!",

31 "developer": {

32 "url": "http://it.mozillalabs.com/"

33 }

34 }

35 },

36 "default_ locale": "en"

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 14 of 276

37 }

HTML5 AppCache

²о/Ωǎ I¢a[р ƛƴǘǊƻŘǳŎŜs an application cache, which allows Web content available on the local device

for off-line usage. Thus, online based applications can be used without internet connection. To add

AppCache support to a Website, a specific manifest file must be provided on a server that must be

referenced from each HTML page of the whole application. The manifest defines which parts can be

online and which must be available offline. In addition, a fallback can be provided for the files only

accessible when online.

Example of Usage HTML5 AppCache [AppCache]

 1 CACHE MANIFEST

 2 NETWORK:

 3 /online.cgi

 4 CACHE:

 5 /offline.css

 6 /offline.js

 7 /offline.jpg

 8 FALLBACK:

 9 /fallback.html

W3C Widgets

The W3C Web Applications Working Group started to work on Widget specifications

[W3CWidgetFamily], small packaged and installable Web applications, back in 2006. Currently the main

specifications relatated to packaging and configuration, APIs, and signing are in a last call phase which

means that the specifications are mainly completed and W3C recommendations are upcoming. A W3C

Widget is basically ZIP file which contains Web documents like html, css, or JavaScript in addition to

media files like pictures. Everything a Widget needs to be functional must be located in this application

package which ensures off-line capability. For describing the content of the package a manifest file is

contained which contains meta data like author, application description, desired screen modes and

signatures.

The following small example describes a Widget with an attached title, an application icon, which can be

shown to the user by the Widget runtime, and a start file, which is used by the Widget runtime to

execute the application.

Example of Usage W3C Widget configuration file

1 <widget xmlns="http://www.w3.org/ns/widgets">

2 <name>Hello World Widget</name>

3 <content src="index.html"/>

4 <icon src="icon.png"/>

5 </widget>

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 15 of 276

Additional specifications of the W3C Widget family describing API access to the applications meta data,

how to update widgets over HTTP, and how to sign and validate the origin of Widgets.

Opera Widgets

The Opera Widget [OperaWidgets] specification has slight differences compared to the W3C one. The

configuration file contains information about the author, the application, potential icons and security

related requirements while the packaging is also a ZIP file, changing the extension from .zip to .wgt.

However, Opera claims that they will support W3C Widgets if the specifications are final. In addition to

accessing the configuration documents metadata, the Opera APIs provide basic application live cycle

management, e.g., allow applications to react on events like "gone to background" or "gone to

foreground". The following example shows the same semantics as the W3C description.

Example of Usage W3C Widget configuration file

1 <?xml version='1.0' encoding='UTF - 8'?>

2 <widget>

3 <widgetname>Hello World Widget</widgetname>

4 <icon>icon.png</icon>

5 </wi dget>

WAC Widgets

Widgets as specified in the Wholesale Application Community are compliant to W3C Widgets with

additions related to security and privacy. For example, WAC defines a policy system to protect access to

device features and user data which must be declared in the Widget configuration document and

evaluated during installation of the Widget.

Recommendations from state of the art

W3C Widget specifications describe different parts around packaging and handling Web applications.

This includes packaging, signing and the definition of APIs which are all also relevant for webinos. Also,

these specifications are in a closely to final stage and will be W3C recommendations soon and the

industry is adapting it (e.g., WAC and Opera). Thus webinos should base its application definition on the

W3C Widget specifications and extend them in order to meet additional webinos requirements like

distributed application design and exposing functions as service.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 16 of 276

Extensions

Extensions in webinos provide access to unique device features as stated in requirement CAP-DWB-FHG-

002 and described in the use case WOS-UC-TA3-004 "Embedding Proprietary Extensions".

In order to enable third party developers to build and use extensions, a sub system to handle extensions

has to be established.

In the browser space there are several solutions available, which we can leverage from. However, there

is a fine distinction between browser plug-ins (e.g., Adobe Flash) and extensions/add-ons (e.g., Firebug).

Whereas plug-ins add support for alternative content types to the rendering engine (which can be

embedded into a Web application), extensions modify or add to existing functionality of the browser.

From a generic stand point, three distinctive parts have to be specified for the extension handling:

1. Application APIs for accessing extensions inside a webinos application,

2. Pre-defined interfaces for integrating the extension into the webinos runtime (e.g., initialize

function of the extension, mapping of extension methods/attributes to JavaScript

methods/attributes)

3. Data schemes for providing metadata about the extension (e.g., name, supported platforms)

Furthermore, we can distinguish extensions in webinos by their "user group". There are on the one hand

platform specific extensions, which are available to all applications executed on the device and on the

other hand there are extensions which can be coupled with a specific application.

The platform specific model is used in the general browser plug-in concept. Once the plug-in is installed

on the device, the plug-in will be usable by all Web applications, which embed an object mapped to the

specific MIME-Type of the plug-in.

The concept of application specific extensions has been applied in HP webOS Plug-in Development Kit

(PDK) [HP-PDK]. A similar approach can be found in Chrome extensions, where an extension can embed

a NPAPI plug-in [Chrome-NPAPI].

State-of-the-Art extensions and plug -ins in the browser environment

In the state-of-art analysis we are going to evaluate different solutions for extensions in webinos such as

browser-plug-in (NPAPI), browser extensions (Chrome extensions) and JavaScript engine add-ons and

provide a recommendation, which solution shall be incorporated into the webinos runtime.

Plug-in standards

The Netscape Plug-in API (NPAPI) has been adopted by all major browser platforms, ranging from

Webkit browsers (Safari, Chrome) to Firefox and Opera. MS Internet Explorer does not support NPAPI in

favour of ActiveX.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 17 of 276

Plug-in are executed directly on the underlying operating system. NPAPI plug-in are browser

independent but rely heavily on the operating systems, especially for 2D and 3D graphical output or

audio output. For each operating system the plug-in needs to be customized and compiled. However,

there are a few frameworks such as [FireBreath] or [Luce] available for simplifying the cross-platform

development of NPAPI plug-ins.

In order to provide a richer interaction between a Web application and a NPAPI plug-in, the NPAPI

addition "npruntime" was introduced. npruntime has been adopted by all major platforms as well.

[npruntime]

Google proposed an extension to NPAPI called PEPPER (or PPAPI) to reduce the dependencies between

the plug-in and the operating system. Currently PPAPI is only supported by Chrome [PPAPI]. Mozilla

stated that they are not interested in working on PPAPI at the moment [moz-ppapi].

The unlimited and direct access to the operating system for plug-ins raises many security considerations,

but is nevertheless an important factor to build unique Web applications and enabling the access to

unique device features. To overcome the security concerns about NPAPI, Google introduced the Google

Native Client project (NaCl) to execute native code in a sandboxed environment and prohibits the access

to all hardware resources (e.g. file-system).

Due to the lack of support for PEPPER in different browser runtime and the limited usability of NaCl we

are going to focus our analysis on plug-ins on NPAPI.

Using a NPAPI plug-in

From a WŜō ŀǇǇƭƛŎŀǘƛƻƴ ŘŜǾŜƭƻǇŜǊΩǎ ǇŜǊǎǇŜŎǘƛǾe the usage of a plug-in is fairly simple. The following

lines of code describe how an app developer checks if a plug-in for given MIME-Type is already installed

on the device and how the Web application can interact with the plug-in afterwards.

1 if (navi gator.mimeTypes["application/webinos - extension - x1"] &&

2 navigator.mimeTypes["application/webinos - extension - x1"].enabledPlugin != null){

3 document.write('<embed type="application/webinos - extension - x1">');

4 var embed = document.embeds[0];

5 embe d.nativeMethod();

6 alert(embed.nativeProperty);

7 embed.nativeProperty.anotherNativeMethod();

8 }

Building a NPAPI plug -in

The NPAPI standard mandates the developer to embed methods inside the plug-in for interaction with

the browser, as described in the following document [npapi-plugin-side-api]. These methods include the

initialization (NP_Initialize), terminiation (NPP_Destroy) of the plug-in as well as receiving information

about the supported MIME-Types (NP_GetMIMEDescription) and version of the plug-in (NPP_GetValue).

NPP_GetValue also provides mechanism to handle requests from the Web application.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 18 of 276

As described in [npapi-browser-side-api] and [npruntime] the browser itself has to embed several

methods in order to support NPAPI plug-ins. The API exposed by the browser to the plug-in incorporates

methods to invoke JavaScript functions of a Web application (NPN_Invoke), to allocate memory of the

browser mem space (NPN_MemAlloc) or to receive information about the browser engine

(NPN_GetValue).

Extensions

There are no cross-browser extension standards available. Each browser engine provides a different set

of functionality for its extensions.

Firefox provides for their add-ons anefficient interface called js-cytpes to invoke native libraries without

the need to integrate an extensions into Mozilla's XPCOM architecture. The js-ctypes is detailed in the

following section. The interaction possibility between a Web application and the extension are fairly

limited and is possible using events.

Extensions in Chrome are a zipped bundle of files (HTML, CSS, JavaScript, images). Extensions are

essentially Web pages with access to all the APIs that the browser provides to Web pages. They can

interact with Web pages or servers using content scripts or cross-origin XMLHttpRequests. Additionally

extensions can also interact programmatically with browser features such as bookmarks and tabs.

However, there are no direct mechanisms available for extensions to call JavaScript functions of a Web

page or vice versa. JS functions can be invoked using DOM manipulation.

Although there is no API provided to interact with the underlying operating system, NPAPI plug-ins can

be part of zipped bundle.

A prototype chrome extensions for webinos built with the webinos discovery plug-ins underlines the

weakness in communicating between the web-app and the extension.

Direct JavaScript additions

The JavaScript engine plays a crucial role in the webinos runtime. For that we are going to analyze two

projects, which propose methods to access the native functions outside of the JavaScript engine. These

two projects are add-ons in Node.js [node.js] and as already mentioned js-ctypes for Firefox extensions

[js-ctypes].

js-cytpes

js-cytpes is an interface for add-ons in Firefox running inside the chrome. The add-on cannot interact

with scripts of a Web application.

js-ctypes is a slim interface to call native libraries stored on the hosting device. It enables the access to

these libraries, but does not provide any methods to store or install platform specific binaries. The

following code snippet illustrates how js-cytpes can be used by a developer to open the native message

box on a Windows system.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 19 of 276

 1 /* importing the js - ctype library */

 2 Components.utils.import("resource://gre/modules/ctypes. json");

 3 /* TODO */

 4 var lib = ctypes.open("C: \ \ WINDOWS\ \ system32 \ \ user32.dll");

 5 /* Declare the signature of the function we are going to call */

 6 var msgBox = lib.declare("MessageBoxW", ctypes.winapi_abi, ctypes.int32_t,

ctypes.int32_t,ctypes.jsc har.ptr, ctypes.jschar.ptr,ctypes.int32_t);

 7 var MB_OK = 3;

 8 /* triggering the previous declared function*/

 9 var ret = msgBox(0, "Hello world", "title", MB_OK);

10 lib.close();

[using-js-ctypes]

node.js addons

Node.js is a server-side JavaScript environment that uses an asynchronous event-driven model. It is

based on Google's JavaScript engine V8. Add-ons for node.js are dynamically linked shared objects and

provide glue to C and C++ libraries [node.js].

From an application developer perspective the usage of an add-on in Node.js is straight forward as

illustrated in the following code snippet.

1 var extension = require(./extension);

2 extension.doSomething();

The development of an add-on in node.js involves knowledge of numerous libraries:

1. V8 JavaScript library for creating objects, calling functions etc

2. libev, a C event loop library, if there is need to wait for a file descriptor to become readable,

wait for a timer, or wait for a signal to received one will need to interface with libev. That is, if

you perform any I/O, libev will need to be used. Node uses the EV_DEFAULT event loop.

3. libeio, a C thread pool library for executing blocking POSIX system calls asynchronously.

All Node add-ons must export a function called init with the following signature:

1 extern 'C' void init (Handle<Object> target)

Mapping requirements to technical solutions and Recommendation for the webinos runtime

Table X compares the different solutions with the relevant requirement developed in work package 2.

The table provides an overview how the different solutions fulfil the relevant requirements.

NPAPI js-ctypes Node.js Add-ons

(CAP-DWB-FHG-002) Designed to add support for Enables the Enables the developer

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 20 of 276

The webinos runtime

SHOULD allow access

to non-webinos APIs to

device features

additional MIME-types for the

rendering engine. Plug-in is

executed on the OS level. It

supports graphical output inside a

web-application.

developer to call

native libraries

within JavaScript.

No graphical output

inside the web-

application

supported.

to execute native code

on the OS level. (Add-

on is statically linked).

No graphic output

inside the web-

application possible.

(PS-DWP-ISMB-202)

The webinos runtime

MUST ensure that an

application does not

access device features,

extensions and content

other than those

associated to it.

Not supported. Mechanisms for

(dis)allowing to load plug-in needs

to be integrated

Not supported.

Mechanisms need

to be integrated

Not supported.

Mechanisms need to

be integrated

(CAP-DEV-FHG-100)

Access to resource on

remote devices SHALL

be available

Not supported. Addition would be

required. Hard to enable since

NPAPI is tightly coupled to the

Web application DOM events.

What about the graphical output?

What about the graphical output,

when remotely accessed?

Not supported

Partially supported.

Server module of

Node.js could be used

to make extensions

remotely available.

Middleware for

exposing the data

needs to be

developed.

It SHALL be possible to

define meta-packages

containing a collection

of applications and/or

extensions.

Partially fulfilled. For application

specific extensions, the plug-in is

part of the application package

and could be described in the

packages/application manifest

Not integrated in

the system yet
Not supported

Extensions SHALL be

packaged in a way that

is as similar as possible

to applications.

NPAPI is one binary file. Meta data

about a NPAPI plug-in such as

name, version, description is

stored in the binary itself.

No package system

defined

Each node.js add-on is

described by a

manifest file in JSON

syntax. Add-ons are

not packaged, but are

stored in a separate

folder

Extensions SHALL be

treated in a way that is

similar and consistent

Partially fulfilled: Plug-in is

embedded object in HTML and

Extension API is used

in the same way as the

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 21 of 276

with standard device

features.

provides a scriptable interface. regular APIs

An Extension that

contains platform-

specific code MUST be

associated with the

supported platform(s).

Must be specified in the metadata

description of the application

JavaScript code is

OS specific.

Platform

association needs

to be integrated

Must be specified in

the metadata

description of the

application

For local usage a solution based on NPAPI is the most compelling one. It's widely supported in browser

runtimes and supports graphical output on the device. The graphical output could be relevant for games

(one of the reasons, why HP/Palm introduced the webOS PDK). A remote access to a NPAPI plug-in could

be achieved, but would be limited to its scripting interface.

Security aspects

Security aspects are detailed in Deliverable 3.5

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 22 of 276

Authentication

User authenticity is the property granting that the user who wishes to access the system is whom he

declared to be.

Verifying the user identity is often the first step for granting other security properties, like authorization

(what the user can do) and access control (what resources the user can access).

The webinos framework aims to grant authentication property in a user-friendly fashion, hiding to the

user and to the application developer most of the more complicated aspects of the authentication

mechanisms.

What's in scope
Authentication topic involves:

 Authentication to the personal zone (user authentication with the personal zone hub).

 Authentication outside the personal zone (user authentication with the service provider).

Preliminary analysis of problems and possible solutions, more analysis is deferred to phase 2

 Personal zone identity data management (where the user credentials are stored, how are used,

how are synchronized with personal zone proxies).

What's out of scope
Anonymous authentication methods (e.g. group signature, direct anonymous attestation, Idemix) and

identity based encryption methods are deferred to phase 2.

Review of State of the Art

OpenID

OpenID is a user centric, decentralized authentication protocol using Web technologies allowing single

sign on. An OpenID provider can do the authentication of a user for some service and the service does

not have to store identity or credential information.

OpenID uses standard HTTP(S) requests and responses. Protocol extensions exist for example for

attribute exchange. The identifier used is either a HTTP(S) URI or an XRI (Extensible Resource Identifier)

Oauth

It allows a resource owner to grant a client access without giving away its credentials for the resource.

OAuth uses Web technology (HTTP(S)) to give fine grained access.

The client requests authorization from the resource owner. The authorization request can be made

directly to the resource owner, or preferably indirectly via an intermediary such as an authorization

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 23 of 276

server.

The client receives an authorization grant and requests an access token by authenticating with the

authorization server using its client credentials and presenting the authorization grant. If the client

credentials and the authorization grant are valid, the authentication server issues an access token.

The client requests the protected resource from the resource server and authenticates by presenting

the access token.

If the access token is valid, the resource server provides access to the resource.

WebID - Web Identification and Discovery

WebID is an early draft by W3C which intends to define how to perform user authentication on the Web

using X.509 certificates, TLS and URIs. The user agent (UA) is associated to the user by a URI. Both

endpoints use TLS to exchange their X.509 certificates for authentication. At the moment, it is not clear

if WebID will evolve to a standard, but if so, it would be quite interesting for webinos as WebID relies on

widely used technologies.

Liberty Alliance / Kantara

Liberty alliance is a consortium for developing a distributed identity management system. It includes an

Identity Federation Framework (ID-FF), an Identity Web Service Framework (ID-WSF) and Identity

Services Interface Specifications (ID-SIS). ID-FF enables identity federation and management and it is

designed to work with heterogeneous platforms and with all types of network devices; ID-WSF provides

a framework for creating, discovering, and consuming interoperable identity services; ID-SIS are a

collection of specifications for interoperable services to be build on top of ID-WSF.

The work of the Liberty Alliance is transitioning to the Kantara Initiative.

The Alliance adopts and extends industry standards, rather than attempting to develop similar

specifications.

ID-FF Liberty architecture needs an Identity Provider (IdP) and uses HTTP protocol to exchange messages

between IdP and Service Provider to authenticate the User Agent.

ID-WSF is a foundational layer that utilizes the ID-FF and provides services. The Discovery Service

determines where the needed resources are located (e.g. user attributes). The Interaction Service allows

an IdP to interact with the owner of the resource that it is exposing. The Data Services supports the

storage and update of specific data attributes regarding a user.

ID-SIS provides specifications for interoperable services (e.g. Geo-location Service, Personal Profile

Service Specification, Employee Profile Service Specification, Contact Book Service Specification).

Shibboleth / SAML

It's an open source implementation of SAML 2.0 specifications. It provides an authentication and

authorization infrastructure to allow federated Web single sign on and attribute exchange. A user

authenticates with his organizational credentials. The organization (or identity provider) passes the

minimal identity information necessary to the service manager to enable an authorization decision.

http://dev.webinos.org/redmine/projects/wp3-1/wiki/Background_-_Authentication#WebID

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 24 of 276

SAML 2.0 is an XML-based open standard for exchanging authentication and authorization data between

an identity provider and a service provider. Its specifications recommend SSL 3.0 or TLS 1.0 for

transport-level security; XML Signature and XML Encryption for message-level security. SAML 2.0

permits direct use of XML Encryption in various places, including an <EncryptedID> element that can

replace the usual <NameID> element.

SAML 2.0 allows for arbitrary mappings between any two formats by using the <NameIDPolicy> element

to describe the properties of the identifier to be returned.

Kerberos

Kerberos is a mutual client/server authentication system designed to establish sessions and support the

secure transfer of data. Kerberos can be used as a single sign on mechanism.

It requires a trusted third party and uses tickets and ticket granting tickets to allow it to scale to multiple

services without repeated user authentication. Kerberos does not require the use of asymmetric

cryptography and uses time stamps for validity periods.

Identity mechanism of XMPP

XMPP is an XML based protocol for near-real-time messaging, presence and request-response services

for confidential and integral message exchange TLS.

The XMPP identifier (e.g. node@domain/resource) has as mandatory field only the domain identifier

and is used to address an endpoint. To authenticate an endpoint SASL is used enabling a server to offer

multiple authentication methods from which a client can choose.

Identity Metasystem

"The Identity Metasystem is an interoperable architecture for digital identity that enables people to

have and employ a collection of digital identities based on multiple underlying technologies,

implementations, and providers."

Three different parties participate in the Metasystem:

 Identity Providers, which issue digital identities.

 Relying Parties, which require identities.

 Subjects, which are the individuals and other entities about whom claims are made.

Five key areas compose the Identity Metasystem:

 Identity representation using the data elements carried in Information Cards (called claims).

Claims are carried in security tokens in the same way adopted per Web service security (called

WS_Security, an extension to SOAP to apply security to Web services).

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 25 of 276

 A negotiation process among identity providers, relying parties, and subjects. Negotiation occurs

using WS-SecurityPolicy (an extension of WS-Security) statements exchanged using WS-

MetadataExchange (a Web Services protocol specification). Identity Metasystem is flexible

enough to carry various format of token and different kinds of claims needed for a digital

identity interaction

 An encapsulating protocol to obtain claims and requirements. The WS-Trust (an extension of

WS-Security) and WS-Federation (an Identity Federation specification) protocols are used to

carry requests for security tokens and responses containing those tokens.

 A means to bridge technology and organizational boundaries using claims transformation.

Security Token Services (STSs) as defined in WS-Trust (an extension of WS-Security) are used to

transform claim contents and formats.

 A consistent user experience across multiple contexts, technologies, and operators. This is

achieved via Identity Selector client software such as Windows CardSpace representing digital

identities owned by users as visual Information Cards.

Firefox account manager

The Account Manager allows users to create new accounts with optional randomly generated

passwords, and log into and out of them with a click.

The Account Manager specification proposes two changes to Web sites:

1. The browser needs to know how to register, sign in, and sign out. A static JSON document

describes what methods the site supports and how they should be executed.

2. The browser needs a way to check which user (if any) is currently signed in. To do this the site

has to set an HTTP header or to supply a URL the browser will ping.

Recommendations from state of the art

SAML 2.0 standard could be useful to exchange authentication data outside the personal zone, to log

into external services. It can also be used to login to the personal zone (to be more precise to login to

the personal zone hub) and to synchronize authentication data among the personal zone hub and the

personal zone proxies.

An account manager similar to the Firefox one could be hosted on the personal zone hub (with a copy

into the personal zone proxies) to implement a more user-friendly authentication mechanism.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 26 of 276

Discovery

Discovery is a procedure for retrieving addressing information of a device or services either through

local or remote networking access mechanism.

The discovery mechanism varies on different discovery protocol adopted. Some technologies are not

involved in discovery mechanism directly; rather they gather discovery information from existing

discovery protocol, e.g. Serverless XMPP uses ZeroConf as its underlying discovery protocol and XMPP

Core uses DNS resolve to gather server information.

The webinos discovery framework aims to define a set of interfaces that hide the complexity of

internetworking technologies for both third party developers and Web developers.

What's in scope

Webinos discovery mechanism investigates the following issues:

 Local Discovery that are based on a variety of local discovery protocols, e.g. UPnP, ZeroConf, BT,

WiFi, and USB.

 Remote Discovery that enables remote access to devices or services. Technologies investigated

include XMPP and its extensions, Web Introducer and Web Finger. Distributed Hash Table (DHT)

has been investigated, but deeper analysis is postponed to Phase II (see below)

What's out of scope

DHT is an optional P2P discovery technology for webinos. It provides a better flexibility to discover.

However, in comparison, XMPP is capable of providing functions for storing information about friends,

authenticating system, finding services. It also defines Protocol format required for webinos architecture

communication. In Phase I, we focus on XMPP technology. Further investigations on DHT is not in scope

of this phase of work.

Focus will be on Bluetooth and USB devices for local discovery in Phase I, this will give an understanding

on local discovery aspect. Firewire and Zigbee will be considered in Phase II, since they are not

widespread local communication technologies. In respect to the target core of webinos, their analysis is

deferred.

Review of State of the Art - Local Discovery

Zeroconf

Zeroconf is set of technologies to address following issues:

 Address configuration (assigned address using DHCP or host-configured link local address)

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 27 of 276

 Resolving host name to IP Address using Multicast DNS

 Description of services supported on device and way to communicate with the device, using

DNS-SD Service Discovery

The multicast DNS/DNS-SD in Zeroconf makes use of following commands to browse, find address and

named instances.

 Register (Services)

 Browse (Named instances)

 Resolve (Address and ports)

It fetches following information at end of DNS service discovery:

 Pointer record - PTR : mapping address to name which is of form

<servicename>.<transport_protocol>.domain>(e.g. operator._http._udp.local, where operator is

a unique user-visible name, no other node can have same name, _http._udp is protocol, and

local is the domain)

 Service locator - SRV record (hostname + port) (e.g. operator.local port 6313). Specifies service

location for fetching information about the protocol. This is also used in XMPP/SIP messages.

 Text Record - TXT (e.g. pdf:application/postscript).

Host offering publishes instances, service type, protocol information, domain name and config

parameters.

See implementation section for more details on ZeroConf examples and message format.

Depending on the messages, they are sent as unicast or multicast query. New services announce about

their presence. Addresses are resolved before sending packets, if it fails to find devices, it updates other

devices too about the service unavailability.

In wide area network (i.e., if domain is specified such as dns-sd.org) it will fetch the services available in

this domain. This could solve the problem of service discovery outside local domain but imposes a

domain registration for each user, which in general is not practical.

UPnP

UPnP is a ISO standard for home network that supports automatic configuration, i.e. the network should

be self configurable. It is a protocol based approach and, differently from older PnP technologies, no

device drivers are involved. UPnP specification is based on the following protocols: HTTP, TCP/UDP,

SOAP, and SSDP.

Communication is between controllers/control points and controlled services. One or more services are

combined to form a device. Controlled devices handle requests from a control point.

http://dev.webinos.org/redmine/wiki/wp3-1/Spec_-_Discovery#Implementation-Architecture

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 28 of 276

UPnP allows a device to advertise its services to control points and allows a control point to search for

devices. Results of discovery are device type, device unique identifier, and URL for obtaining device

description. Search and advertise are multicast messages, while request/response between control

point and device are unicast messages. If IP address or services are changed it is the responsibility of the

device to advertise the changed IP address. Each device, embedded device and service offered by each

device should be advertised via multicast. Because of the nature of the UDP, advertisement messages

are sent multiple times and are based on the value specified in Cache Control. Cache controls the expiry

time of advertisement.

In UPnP, discovery is done using SSDP (Simpler Service Discovery Protocol), it is based on HTTP protocol

1.1. It is a simple protocol which comprises of start line and list of message headers.

SSDP Start line:

 NOTIFY * HTTP/1.1 \ r \ n

 M- SEARCH * HTTP/1.1 \ r \ n

 HTTP/1.1 200 OK \ r \ n

Bluetooth

The process for Bluetooth service discovery involves two steps - inquiry of all nearby devices, and

connection to each of those devices in order to search for the requested services.

HCI inquiry can be used to detect nearby devices. It provides a command interface to the baseband

controller and link manager, and access to hardware status and control registers. Essentially this

interface provides a uniform method of accessing the Bluetooth baseband capabilities.The HCI exists

across three sections, the Host - Transport Layer - Host Controller. Each of the sections has a different

role to play in the HCI system.

In order to search services, the bluetooth stack provides Service Discovery Protocol (SDP). SDP enables

network devices, applications, and services to seek out and find other complementary network devices,

applications, and services needed to properly complete specified tasks. The attributes of a service

include the type or class of service offered and the mechanism or protocol information needed to utilize

the service.

SDP involves communication between a SDP server and a SDP client. The server maintains a list of

service records that describe the characteristics of services associated with the server. Each service

record contains information about a single service. A client may retrieve information from a service

record maintained by the SDP server by issuing a SDP request. If the client, or an application associated

with the client, decides to use a service, it must open a separate connection to the service provider in

order to utilize the service. SDP provides a mechanism for discovering services and their attributes, but

it does not provide a mechanism for utilizing those services.

Normally, a SDP client searches for services based on some desired characteristics of the services.

However, there are times when it is desirable to discover which types of services are described by an

SDP server's service records without any a priori information about the services. This process of looking

for any offered services is called browsing.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 29 of 276

Review of State of the Art - Remote Discovery

XMPP (Extensible Messaging and Presence Protocol)

XMPP architecture and messaging protocol is quite simple and is primarily a client-server technology.

The established connection between client and server allows searching for friends, resources, items and

services. Resources could be user devices; items are the devices which are not IP capable (e.g USB).

More description about resources, items and services is included in the protocol definition section.

XMPP core is defined in RFC 6120, it describes the connection between XMPP client and server over

public IP. It involves stream message exchange, feature and mechanism negotiation, security (TLS and

SASL), presence, and message exchange. Discovery mechanism will rely on XMPP extension, XEP-0030 to

search services, XEP-0174 for Serverless messaging (Discovery is based on ZeroConf, once device are

resolved they can use XMPP). At different layers of webinos system different XMPP extensions can be

used and if particular exchange of message is required to support it is easy to implement extension

using XMPP. More details about nodes and items is covered in protocol definition section.

XMPP in case of public IP uses DNS SRV record to fetch information about the domain. At transport layer

it uses TLS (Transport Layer Security) and allows usage of different SASL authentication mechanism to

authenticate users. Different XMPP servers impose different mechanisms and different compression

technologies to communicate between client and server.

Distributed Hash Tables (DHT)

DHT allows sharing of information between peers. Users wishing to exchange information use a hash file

and a filename. The filename becomes the key and is searchable by entities connected to same

bootstrap and to same port. One entity acts as server that holds information about keys and responds

back to clients about the node holding key. All nodes connected exchange information about nodes

available i.e. which nodes are online and are checked for their presence from time to time.

There are different DHT Protocols such as Chord, Tapestry, Kademlia, which differ in how nodes are

found. DHT is relevant to webinos and could be used for remote discovery. The main issue is to find

relevant keys; we should use a layer on top to do searching of all remote nodes with appropriate search

query. For example, searching for George specific device, information is stored in form of a key.

Information can be only obtained if user searching gives correct names based on which key was

generated. If the key is generated in form of George+Bluetooth, searching for George+bluetooth will not

get result. A layer on top is required to handle these permutations to search for the proper key.

If no adjacent clients are there, it is not clear how it communicates with remote nodes. Other issue is

restrictive usage to allow only certain devices that matches user device should be accessible. For

example: if devices are available in DHT based network stopping George device to be discoverable by

Alice device is a problem. George device to be searchable by only George's device, is not clear and how

to do it needs to be defined in order to use DHT in secure way.

Major problem in DHT are change in node information becomes difficult to address a node, node acting

as bootstrap needs to be available all the time, and controlling namespace for the key generated. In

http://dev.webinos.org/redmine/wiki/wp3-1/Spec_-_Discovery#Formal-Specification

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 30 of 276

webinos context, DHT could be used to find peers which provides information of services available and

will be further investigated in Phase II.

Web Finger

The WebFinger is protocol inspired by the old Name Finger protocol defined in [RFC 742]. The Name

Finger protocol enables the possibility to get information about a given user. WebFinger is an evolution

that instead of using a direct TCP connection, it uses HTTP [RFC2616], XRD and Web Host Metadata

[IETF, draft-hammer-hostmeta-16] to provide a descriptor of a single user. The protocol consists of two

parts:

1. One URI schemes to identify user accounts, e.g. acct:joe@example.com

2. A simple protocol for resolving a user account into an extensible descriptor formated as a XRD

resource.

The protocol is not an official standard but the work has been driven by several parties involved Identity

Commons, which is a community of groups working on developing the identity and social layer of the

Web.

Web Introducer

It addresses finding services that user has registered on Web. For example, it allows user to connect

with his choice of a photo sharing website; all the information is present with registrar and it provides

information for communication of services.

It is quite relevant for webinos to allow addressability of different resources that are available over the

Web for a particular user and could be part of personal hub.

Recommendations from state of the art

Local Discovery

The diversity of internetworking technologies for local discovery introduces a variety of discovery

protocols and implementations. Our literature review and hand-on demo work recommend the use of

SSDP defined in UPnP and ZeroConf for local IP network discovery due to their efficiency and popularity.

For other devices that don't support UPnP and ZeroConf, specific discovery mechanisms shall apply, e.g.

standard Bluetooth HCI inquiry and SDP for Bluetooth device discovery.

Remote Discovery

XMPP is a relevant technology as it supports finding friends, their resources, items and services. It

supports publish and subscribe mechanism, event mechanism, and also serverless messaging for local

area network.

http://tools.ietf.org/html/rfc742
http://tools.ietf.org/html/rfc2616
http://docs.oasis-open.org/xri/xrd/v1.0/os/xrd-1.0-os.html
http://tools.ietf.org/html/draft-hammer-hostmeta-16
http://www.idcommons.net/
http://www.idcommons.net/

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 31 of 276

The webinos platform could utilize XMPP core and its extensions. XMPP core specification allows device

connectivity and establishing secure communication. XMPP is mostly considered as chatting protocol

but for webinos platform, XMPP specification/extension considered are service discovery, getting node

information, and resource information.

Use webfinger to discovery Personal Zone Hubs (PZH). The PZH will be identified by a URI and this will

introduce another personal address. However by using webfinger it will be possible to leverage on

existing identities like an e-mail address, Facebook identity or Google Id which can be obtained from

many different sources like the local contact book, social graph or from business cards. The end user

does not need to be aware of the PZH URI.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 32 of 276

Messaging

The webinos architecture features a powerful and extensible messaging framework that allows to easily

exchange arbitrary data, in terms of events, among addressable entities (e.g., applications, services), also

completely hiding away any complexity related to the different underlying interconnect technologies.

It is based on a flexible, yet rigorously defined, event description that is both independent of the actual

payload data format and serialization format for data transmission. This basically means that custom

event-based protocols can be easily defined and implemented and that it is possible to choose the

"encoding" that better suits the involved interconnect technology.

Despite the swiss-army knife-like nature of this system, at a basic level the handling of events reduces to

just a few simple concepts from the developer perspective: generating and sending events, or

forwarding them, and registering listeners for incoming events. More advanced features are also

offered, including, but not limited to, the possibility to send/forward events to multiple destinations at

once, to associate event listeners to a particular event source, destination and/or type, to specify a time

frame for event delivery, to ask for delivery notifications and to control/monitor the storing and

forwarding of events that cannot be immediately delivered.

Furthermore, two more specific protocols are defined on top of this low level generic framework, one

regarding event delivery notifications and another describing RPC functionality needed to implement

webinos services.

What's in scope

 Event description: what a generic event looks like from the developer's point of view, which

metadata is compulsorily or optionally associated to each event;

 Event processing: how generic event metadata influences the sending, caching, storing,

forwarding and listening to events;

 Application-, device- and network-level event routing: how the event handling mechanism

interfaces to other parts of the webinos architecture to allow event exchange;

 Event delivery notifications and RPC protocols: what they are, how they work, what their

relationship with the generic event handling mechanism is.

What's out of scope

 Interconnect technology-dependent details of data transmission over the network;

 Discovery and binding of addressable entities;

 Definition of special-purpose event-based protocols;

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 33 of 276

 User-visible notifications and user interaction.

Review of State of the Art

The XMPP core protocol and some of its extensions (also known as XEPs) have been analyzed as today's

state of the art technology for generalized routing of data.

Formerly known as Jabber, XMPP is an open, decentralized and extensible protocol for near-real-time

XML data exchange; it is backed and formalized by IETF (RFCs 3920-3923, 4854, 4979, 5122) and further

developed by the XMPP Standards Foundation, with several mature implementations already available.

Our XMPP for Event handling state of the art analysis documents clearly outlines how it would be

possible to satisfy most webinos' functional requirements concerning remote notifications and

messaging by simply adopting XMPP and requiring a specific set of XEPs to be supported by the

implementations; furthermore, such a choice would also allow to reuse at least part of the already

existing XMPP server-side infrastructure without modifications.

On the other hand, the scope of such analysis is strictly limited to the exchange of structured data (i.e.,

events) and does not take into account issues that are of fundamental importance in other functional

areas.

Recommendations from state of the art

Given XMPP's maturity and suitability for applications in many different contexts, the webinos' event

handling system will borrow a consistent set of concepts, features and technical solutions from such

technology.

Such a strategy should also be of help in defining a bidirectional mapping between the two technologies

for interoperability purposes, yet without creating unilateral or mutual interdependencies.

http://xmpp.org/
http://xmpp.org/xmpp-protocols/xmpp-extensions/
http://xmpp.org/
http://dev.webinos.org/redmine/projects/wp3-1/wiki/XMPP_for_Event_handling

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 34 of 276

Context

The Context area addresses all issues relating to management of contextual information (detection,

acquisition, representation, distribution, etc) as well as all the potential consequent capabilities (such as

content Adaptations and Reasoning) that could enabled by being aware and process this information

within webinos.

Through webinos users will be able to access and use applications that work across devices allowing

them to have an uninterrupted usage experience. Such a capability will eventually propagate activities,

events and even connections that users maintain to be expressed also through the set of owned devices

too. For example sharing a piece of multimedia (photo, photo-album, a playlist) with another person

within the scope of using one application across several devices.

The innovation of the webinos approach in context framework is that it structures the context data that

occur from these activities/events that are performed through connected devices in a way that could

"make sense" and make this information available in a privacy preserving way to support the creation or

context aware application that can provide a better user experience.

What's in scope

The webinos context framework comprises the following points:

 The Context Architecture, outlining the basic component of their interconnections. The

architecture outlines how context data are acquired through context related events that occur

in the system and are made available through the system APIs as well as how these activities are

integrated with the overall webinos Privacy architecture (through a policy enforcement point).

 An analysis of how contextual structures are formed within the context framework and an

outline of some fundamental context structures such as the User context, Device Context,

Application Context context objects.

 An analysis of technologies to implement the Storage and Extensibility Framework for the

Context Model - where different part of the context model are stored, for example user context

in the cloud, device context in the device and how these are linked among them.

 APIs for Context Access through two basic mechanisms, Querying for Context Data and

Subscribing to Context Related Events.

Whats out of scope

Currently the following areas are out of the scope of the webinos context framework:

 General data management and storage within webinos.

 User ID management, privacy and security specificaiton within webinos.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 35 of 276

Review of State of the Art

Context awareness and adaptation constitutes quite an extended area with regards to underlying state

of the art. The following dimensions have been examined within the context awareness activities:

 EU research projects that deliver relevant specifications/prototypes.

 Existing and emerging standards that can enable context awareness and adaptations

functionality with a focus in representing social activity.

 Underlying technologies, academic research and prototypes coming either within or outside of

the consortium.

Recommendations from state of the art
The underlying state of the art - particularly from dedicated context projects - reveal some design

patterns when it comes to designing context oriented solutions, specifically:

 Context is tightly related with the occurrence of events that signify the presence (or existence)

of a situation.

 Context data refer both to present moment but also to past (or even future) moments. This

means that is is necessary to provide a storage facillity that holds not only current but also

history context data.

 Acquisition, Access or Reasoning of Context Data should take into consideration the User

preferences, empowering the user to control or define these activities.

All the above points have been taken into consideration in designing and later implementing the

webinos Context Framework.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 36 of 276

 Security and Privacy

One of the primary aims of webinos, and of future internet projects in general, is to provide a secure,

privacy-preserving internet experience. There are many well-documented problems with security on

Web applications and the Web in general, including weak authentication [BICH11] and numerous forms

of content injection attacks [OWASP10]. Furthermore, mobile devices contain enormous amounts of

private and confidential information, the protection of which is paramount for both business and home

users. The webinos project has many of the same problems and, by creating a joined-up cross-device

application infrastructure, it could be argued that there was an increased potential for harm: attackers -

such as the webinos personas Ethan [D027-Ethan] and Frankie [D027-Frankie] - could potentially steal

valuable data or the end user's identity on every device they own. Furthermore, webinos has multiple

stakeholders with different security requirements. Some of these produce contradictions, for example a

developer - such as the Jimmy persona [D027-Jimmy] - may want to find out demographic data and take

advantage of analytics to profile users, whereas users such as Helen [D027-Helen] wish to preserve their

private information. These factors, as well as the diverse number of devices that may be supported by

webinos, means that a sound security architecture is of vital importance to the webinos system.

However, the security architecture is also an opportunity to make a significant contribution to the

current state-of-the-art in mobile application security and privacy. By introducing a standardised and

robust security framework, webinos can potentially increase security and privacy on the four device

domains simultaneously. Part of this is due to the fundamental webinos vision of creating a standardised

application environment: by providing a unified user interface for making access control decisions,

webinos will significantly increase usability and therefore encourage users to make better (and more

privacy-friendly) security decisions. This is one place in which existing application architectures are

fragmented, as the major mobile operating systems such as iOS and Android have different security

models, making the experience less familiar and potentially discouraging users from expressing their

privacy preferences. The current systems have also been criticised for having an "all or nothing"

approach, with Android and iOS requiring that applications are installed with access to all features the

developer asked for, or not installed at all. This has proven unpopular with users, with alternative

Android systems appearing which offer the revocation of privileges [DEME11). It has also been noted

that many applications request more privileges than they need. This means that users are not as

cautious of applications which request many privileges as they should be. Webinos is well positioned to

provide better solutions than the current state of the art.

The webinos security and privacy architecture is fully outlined in deliverable [D035) but the essential

functional components of the policy enforcement mechanism are explained in this document.

Implementing a policy enforcement mechanism requires several novel features, including:

1. Support for flexible access control policies referring to all APIs and data sources on the webinos

platform

2. Policies which can refer to cross-device interaction, both inside a webinos "personal zone" and

between users with no prior trust relationship

3. Synchronisation of access control policies between devices within the webinos personal zone

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 37 of 276

4. Connecting application requests to privacy policies, so that users can make well-informed

decisions about their personal privacy.

The security policy system builds on work from WAC [WAC] and BONDI [BONDI] and is based on the

XACML language and architecture [XACML].

What's in scope

This document describes the policy architecture for webinos, and covers the following topics:

 Access controls for applications. This includes permissions for:

o Device APIs, such as features, location services and cameras

o Other devices, both inside and outside of the personal zone

o Remote content and services

o Personal profile data

o Other applications on the same device and on other devices

 Policy synchronisation between a users' devices

 Privacy data-usage policies and obligations for applications

 Application trust chains and certificates

Details on authentication and user identity management are also included in this deliverable in later

sections.

Whats out of scope

The following issues are not included in this document, but are covered either in another deliverable

D03.5 or in the second phase of webinos specification:

 Remote management of devices and remote policy enforcement (phase 2).

 Implementation details for the protection of applications and the webinos runtime during use

(recommendations in D03.5, further details in phase 2).

 Platform integrity reporting and attestation (specified in D03.2 and discussed in D03.5)

 Integration with social networking for more usable policies (phase 2)

 User interface specifications for policy editing and resolution (phase 2 and D03.5)

 Digital rights management and content protection (phase 2).

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 38 of 276

 Detailed specifications of privileged applications (D03.5)

Review of State of the Art

There is a great deal of existing work in access control in general and mobile platforms specifically. A

comprehensive summary of related work to security is covered in deliverables D02.7, D03.5 and D03.6.

Recommendations from state of the art

The security architecture, much like the rest of the webinos specification, has been designed to reuse as

much existing technology as possible. This is particularly important in security, as creating new designs

and writing new code will introduce new design flaws and vulnerabilities. Many existing solutions have

already undergone extensive testing and will have been patched to fix many outstanding issues.

Therefore, we have built primarily on the existing WAC specifications and the general XACML

architecture. From the analysis, we can see that these already solve many problems in webinos - such as

mediating access to device features - but must be modified to support new requirements.

However, we can also improve on WAC designs by implementing features such as privacy policies which

remained underspecified. We propose to take advantage of the work produced by the PrimeLife project

to create usable policies which protect user privacy.

Privileged Apps

The scope of this section is to provide Access Control or Privileged Apps and Services specifications. The

objective of this section is to recommend a security solution for implementation using the Privileged

Apps and Services concept in webinos project. The use of the concept of Privileged Apps and Services is

an important factor in webinos. A webinos application will be signed with a certificate that is in the

privileged certificate store on the device. Target an application based on its Digital Certificate and there

shall be policies assigned to these applications.

Privileged applications are those apps that request additional capabilities, e.g. access to a location or to

restricted data such as your contacts, vehicle engine details. Although these kinds of applications also

require access to special APIs like an automotive or home media app and the access to these APIs has to

be granted by administrator or a privileged user, these applications shall focus on the management of

the webinos runtime.

A privilege management creates, stores, and manages the attributes and policies needed to establish

ŎǊƛǘŜǊƛŀ ǘƘŀǘ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ŘŜŎƛŘŜ ǿƘŜǘƘŜǊ ŀ ǳǎŜǊΩǎ ǊŜǉǳŜǎǘ ŦƻǊ ŀŎŎŜǎǎ ǘƻ ǎƻƳŜ ǊŜǎƻǳǊŎŜ ǎƘƻǳƭŘ ōŜ

granted. Access control uses the data made available by authentication, privilege management, and

other information provided by the access request provider, such as the form of access requested to

make an access control decision.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 39 of 276

The design principles for the privileged architecture in this section are:

1.) Guarding against threats that access critical data.

2.) Establishing levels of security for data and other resources by using Policies.

3.) Implement dashboard, installer, launcher, and policy manager.

4.) Allow direct control over API access by the API provider. E.g., a car manufacturer can write engine

monitoring APIs and allow them to access only via the car manufacturer signed applications. Let there

be a signed certificate, Identity and Integrity checks for widget based Apps. Protection and Security from

hacks at the runtime and accessing sensitive API's. To support these Cryptographic methods, Encryption

code be used. The Apps are signed and confirmed by the Device Manufacturer when using Sensitive

API's and Critical data, the Monitoring system checks and manages that there is no access to critical data

like Engine Diagnose API's and HW data.

5.) The Privileged Apps and Services shall provide information related to Date, Event ID, Event

Description, Username, Parent PID, Policy, Application Group, Reason, Custom Token,

Filename/Codebase, Type, Instances, Description, and Certificate.

Two ways of using Privileged Apps and Services in webinos for security purpose:

1.) Enforce access control policies at the Runtime Environment.

2.) An Application which uses system commands and classes which manages the OS services, access

rights, registries, roles based on the users and so on.

State-of-the-Art

In the state-of-art analysis we are going to evaluate different solutions for Privileged Apps and

Services(Access Control) in webinos such as W3C, WAC , Android and BONDI

Privileged Application in JavaScript and provide a recommendation, which solution shall be incorporated

into the webinos runtime.

The working of XACML with Privilege Apps an d Services (Access Control)

The deployment of the XACML access control system SHALL work:

ω ! ¦ǎŜǊ ǎŜŜƪǎ ŀŎŎŜǎǎ ǘƻ ǎƻƳŜ ǊŜǎƻǳǊŎŜ ŀƴŘ ǎǳōƳƛǘǎ ŀ ǉǳŜǊȅ ǘƻ ǘƘe entity (Policy Enforcement Point

(PEP)) protecting the resource.

ω ¢ƘŜ t9t ŦƻǊƳǎ ŀ ǊŜǉǳŜǎǘ όǳǎƛƴƎ ǘƘŜ ·!/a[ǊŜǉǳŜǎǘ ƭŀƴƎǳŀƎŜύ ōŀǎŜŘ ƻƴ ǘƘŜ ŀǘǘǊƛōǳǘŜǎ ƻŦ ǘƘŜ ǎǳōƧŜŎǘΣ

action, resource, and other relevant information.

ω ¢ƘŜ t9t ǘƘŜƴ ǎŜƴŘǎ ǘƘƛǎ ǊŜǉǳŜǎǘ ǘƻ ŀ Policy Decision Point (PDP) that examines the request, retrieves

policies (written in the XACML policy language) that are applicable to this request, and determines

whether access should be granted according to the XACML rules for evaluating policies.

ω ¢he answer (expressed in the XACML response language) is returned to the PEP, which can then allow

or deny access to the requester.

http://dev.w3.org/2009/dap/perms/FeaturePermissions.html
http://public.wholesaleappcommunity.com/redmine/embedded/wac2pubrev/core/widget-security-privacy.html
http://developer.android.com/reference/android/Manifest.permission.html
http://bondi.omtp.org/1.01/security/BONDI_Architecture_and_Security_v1_01.pdf

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 40 of 276

Policy Language and Enforcement

 The implementation of a policy system requires to choose algorithms for reconciling conflicting

policies. It should independently administer multiple policies controlling access to the same

resources.

 An efficient way of locating all the policies that are potentially applicable to a given decision.

Authentication and Authorization

 Grant security properties, like authorization and access control like what resources the user can

access.

 The logging of the Authentication to the personal zone (user authentication with the personal

zone hub). The Notification and keeping track of the Personal zone identity and personal zone

proxies.

 Running retrieve data in privilege app space.

 Updating user credential information such as password, certificates.

 Enable access to recorded decisions when the user isn't available in real time.

Authorization and Privileg

 Common authorization model for all the trust domains.

 Common language for expressing security policies.

 Support of authorizations at all levels of granularity.

 Storing Authorization in a safe and protected place if they are not digitally signed

 Identify applications which have been granted particular privileges.

 List of all their webinos applications for the users.

 Restrictions of the access control policies on applications from potentially malicious

applications.

 Ensuring that only trusted components are downloaded

 Delegate decisions to a trusted third party when appropriate.

Discovery

 The access control should check whether the address, devices or services are valid or not.

 If service driver is required to be installed for the device, privilege application should support

the driver.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 41 of 276

 Device visibility control, device in multicast mode could be passive or active listener.

 Access control to access different file system area and obtain user credentials information.

 Specify a access format.

Context

 Defining Policies to access his (photo, photo-album, a playlist) and other stuffs across other

webinos devices.

 Grant and retrieve the data and the Policies based on Context.

 Storing of device context in file system.

 Review and manage which applications users have granted permissions to, and in what context.

 Policies based on Subjects and Resources

Tasks in the scope of Privilege Apps and Services

The PZP can handle many devices and multiple users. So there should be certain level of permissions

enforced to on a particular user for viewing, editing files, modifying system files. Similarly, there may be

certain Web apps which would try to access the restricted registry files, drivers or at the kernel level.

So the owner of the device can permit privileges to delete files, view private information, or install

unwanted programs.

Most Privileged

When the user or process is able to obtain a higher level of access than an administrator or system

developer intended, possibly by performing kernel-level operations

ω !ƴ ŀǘtacker may then be able to exploit this assumption so that unauthorized code is run with the

application's privileges.

ω {ƻƳŜ ǎŜǊǾƛŎŜǎ ŀǊŜ ŎƻƴŦƛƎǳǊŜŘ ǘƻ Ǌǳƴ ǳƴŘŜǊ ǘƘŜ [ƻŎŀƭ {ȅǎǘŜƳ ǳǎŜǊ ŀŎŎƻǳƴǘΦ ! ǾǳƭƴŜǊŀōƛƭƛǘȅ ǎǳŎƘ ŀǎ

buffer overflow may be used to execute

arbitrary code with privilege elevated to local system.

ω !ƴȅ user which accesses binary in the file system or Registry can therefore elevate privileges.

ω Core dump be performed in case it crashes and then have itself killed by another process.

ω /Ǌƻǎǎ Zone Scripts should be identified so that the running of the malicious code on the client side can

be prevented.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 42 of 276

Least Privileged

Least Privileged: An application allows gaining access to resources that normally would have been

protected from an application or user. The application would perform actions but different security

context than intended by the application developer or Administrator.

RBAC - Role Based Access Control

RBAC is an approach to restricting system access to authorized users. The permissions to perform

certain operations are assigned to specific roles. The webinos shall provide a RBAC model where the

Privileged Users are assigned particular roles, and through these role assignments acquire the

permissions to perform particular system functions. Since users are not assigned permissions directly,

but only acquire them through their role (or roles), management of individual user rights becomes a

matter of simply assigning appropriate roles to the user; this simplifies common operations, such as

adding a user devices, or changing a user's role.

Three primary rules are defined for RBAC:

1. Role assignment: A subject can execute a transaction only if the subject has selected or been assigned

a role.

2. Role authorization: A subject's active role must be authorized for the subject. This rule ensures that

users can take on only roles for which they are authorized.

3. Transaction authorization: A subject can execute a transaction only if the transaction is authorized for

the subject's active role. With rules 1 and 2, this rule ensures that users can execute only transactions

for which they are authorized.

Areas to Consider

 If a subject has roles R1 , R2, ... Rn enabled, can subject X access a given resource using a given

action?

 Is subject X allowed to have role Ri enabled?

 If a subject has roles R1 , R2, ... Rn enabled, does that mean the subject will have permissions

associated with a given role R'? That is, is role R' either equal to or junior to any of

ǊƻƭŜǎ wм Σ wнΣ ΧwƴΚ

Access Control Matrix

It would be important for webinos to include the Access Control Matrix it is a useful model for

understanding the behavior and properties of access control systems. This matrix defines the trust

relationships between the control domains and sub-domains. The implementation of the access control

matrix can be based on a combination of Access Control Lists, permission files, and an enforcement

ŜƴƎƛƴŜΣ ǎǳŎƘ ŀǎ WŀǾŀΩǎ {ŜŎǳǊƛǘȅ aŀƴŀƎŜǊ ŀƴŘ !ŎŎŜǎǎ /ƻƴǘǊƻƭƭŜǊΦ tƻƭƛŎƛŜǎ ŀǊŜ ōŀǎŜŘ ƻƴ ǘƘŜ ǊŜƭŀǘƛƻƴǎƘƛǇǎ

defined in the Access Control Matrix.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 43 of 276

Types of accesses that are necessary to define the relationships between the objects and subjects in

webinos:

1. File Access, which includes the following permissions: Read, Write, and Execute.

2. Message Access, which is necessary because of the need to control the exchange of messages

between trusted and non-trusted domains and subjects. Message Access includes the following

permissions: Send and Receive.

3. Process Access, which controls the start and termination of processes such as Core Software

Download, including the following permissions: Initiate, and Terminate.

4. Key Accesses. This access type includes Create and Use

Examples showing the Policy Enforcement Point in Mobile Platform and in the

High Level Vehicle Bus Infrastructure

Policy Enforcement Point in Mobile Platform:

The security features and the policies supported by the Mobile device are enabled or enforced in the

Policies and Privilege services layerΣ ǿƘƛŎƘ ŜȄǘŜƴŘǎ WŀǾŀΩǎ ϥ{ŜŎǳǊƛǘȅaŀƴŀƎŜǊϥ ŀƴŘ ϥ!ŎŎŜǎǎ/ƻƴǘǊƻƭƭŜǊϥ

classes. At runtime, the Policies and Privilege services layer decides what policies are to be enforced and

what privileges can be applied when a connection request is made. Based on the domain, device, device

type and whether the domain or device is trusted or un-trusted, the Privilege layer can enforce

application level authentication, encryption of the session and any other specific access policies. For the

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 44 of 276

Information regarding the services that the decision is to be are available in the manifested files and are

described in hash of Policy files that are stored securely.

The Privilege services layer provides security services:

 The Privilege Monitor stores event logs in its registers for auditing purposes.

 The Privilege Apps and services will provide cryptographic services, to include asymmetric key

generation, digital signatures, hashing, and encryption.

 ¢ƘŜ ƪŜȅ ǳǎŜŘ ŘǳǊƛƴƎ ŀŎŎŜǎǎ ŎƻƴǘǊƻƭ Ŏŀƴ ōŜ ǎŜŎǳǊŜƭȅ ǎǘƻǊŜŘ ǳǎƛƴƎ ǘƘŜ /ŜǊǘƛŦƛŎŀǘŜ ǎǘƻǊŜΩǎ {ŜŎǳǊŜ

Key Storage capabilities.

 The runtime Privilege Apps auditing functions will make full use of the registers, Secure Data

Storage, and Session Storage capabilities.

Example for Policy Enforcement Point in High Level Vehicle Bus Infrastructure for IVI:

This example illustrates the Policy Enforcement Point in a High Level Vehicle Bus Infrastructure. The in-

car headunit is basically an in-car PC connected to the infotainment bus. All infotainment relevant

control units such as the cd changer, telephone, gps module are connected to this bus and can

communicate with each other on this bus by sending messages. At BMW MOST driver is being used as

the infotainment bus (for more information on MOST Bus see this link:

http://en.wikipedia.org/wiki/MOST_Bus. This infotainment bus is connected to the Common Gateway

(CGW). To this central gateway all other vehicle buses (e.g., High speed CAN or comfort CAN) are

connected as well. At the CGW some mesǎŀƎŜǎ ŦǊƻƳ ǘƘŜ Ψ/ƻƳŦƻǊǘ-/!bΩ ŀƴŘ ΨIƛƎƘ {ǇŜŜŘ /!bΩ όŜΦƎΦΣ

speed, wiper status, climate) are converted to MOST messages and routed into the MOST bus.

http://en.wikipedia.org/wiki/MOST_Bus

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 45 of 276

The MOST bus transports control data as well as data from audio, video, navigation and other services.

MOST technology provides a logical framework model for control of the variety and complexity of data.

The MOST Application Framework organizes the functions of the overall system. MOST is able to control

and dynamically manage functions that are distributed in the vehicle.

There are two places to enforce the access to the vehicle data. We can place the enforcement point

inside the webinos runtime: When an app calls a specific vehicle function, the runtime checks back with

a PDP, if the access is allowed or not. If allowed, the request is pushed to the OS service to create a

MOST message and put it onto the bus. At the OS service (before we built the MOST message for this

request) we could also check back with the PDP, if the access is allowed or not.

Technical us e cases
This section includes the Technical use cases and requirements identified from the WP2.1 and WP2.2 in

the area of Privileged Apps and Services.

User Stories, Use Cases Identified

Related User Stories

WOS-US-7.1: Designing Policy-aware webinos Applications

WOS-US-7.4: Privacy Controls and Analytics for Corporations and Small Businesses

Related Use Cases

ω ²h{-UC-TA8-002: Interpreting policies and making access control decisions

ω ²h{-UC-TA8-003: Enforcing multiple policies on multiple devices

ω ²h{-UC-TA8-007: Policy authoring tools

ω ²h{-UC-TA4-013: Dynamically Sharing Content with other Users in a Controlled Manner

ω ²h{-UC-TA6-00X: Checking access to APIs ς Refers to Content Adaption

ω ²h{-UC-TA1-008: webinos Federation

ω ²h{-UC-TA4-014: Continuous sharing of a medical file through webinos enabled devices

ω ²h{-UC-TA7-008: Create contexts from a pre-defined template

This section of the specification aims to satisfy the following require ments

ω t{-USR-Oxford-50

ω t{-USR-Oxford-51

ω t{-USR-Oxford-116

ω t{-DEV-ambiesense-08

ω t{-USR-TSI-4

ω t{-DWP-ISMB-202

ω t{-USR-Oxford-35

ω t{-USR-Oxford-38

ω t{-USR-Oxford-115

ω t{-USR-Oxford-72

ω t{-USR-Oxford-36

ω t{-USR-Oxford-34

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 46 of 276

ω t{-USR-Oxford-5

ω t{-USR-Oxford-17

ω t{-DEV-Oxford-28

ω t{-USR-TUM-*(124)

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 47 of 276

Pri vileges and Access Control Use Case and Requirements identified

Policy management, authoring and usage features

ReqID Requirement Notes
Use Case

Refs
Review Architecture Priority

PS-USR-

Oxford-50

Users SHALL be provided with the ability to

identify applications which have been

granted particular privileges

WOS-

UC-TA9-

006

UI, Policy

layer

PS-USR-

Oxford-51

Users SHALL be able to view a list of all their

webinos applications and show the

authority that certified the application

WOS-

UC-TA9-

006

UI, Policy

layer

Runtime Protection:

ReqID Requirement Notes
Use Case

Refs
Review Architecture Priority

PS-USR-

Oxford-116

The webinos runtime environment

SHALL protect applications and itself

from potentially malicious

applications and SHALL protect the

device from being made unusable or

damaged by applications. The

webinos Runtime Environment is a

naturally privileged process that

should be strongly protected from

applications. Furthermore, it must

prevent applications from misusing

device capabilities when they run.

WRE, APIs

Phase

1

PS-DEV-

ambiesense-

08

The webinos runtime environment

SHALL support customised encryption

of any data stream (independent of

its data type or format) The main

threat is anyone seeking the

information/ data transferred in the

data stream

None

WRE

Phase

2

PS-USR-TSI-4

webinos shall ensure that only

trusted components are downloaded,

and that applications are guaranteed

some level of execution (to prevent

Policy later,

App manifest

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 48 of 276

from denial of service) Device

integrity ς prevent malware

compromising reliability + conf. +

availability. QoS. This implies

knowledge of the components that

are trusted?

PS-DWP-

ISMB-202

The webinos runtime MUST ensure

that an application does not access

device features, extensions and

content other than those associated

to it.

Moved

from

LC

WOS-UC-

TA6-00X:

Checking

access to

APIs

WRE, APIs

Policy management, authoring and usage features

ReqID Requirement Notes Use Case Refs Review Architecture Priority

PS-USR-

Oxford-

35

webinos access control

policies shall be able to

specify fine-grained

controls involving the

source and content of an

access control request

This implies

that application

instances are

identifiable

* WOS-UC-TA9-

002: Interpreting

policies and

making access

control decisions

WRE, Policy

layer

PS-USR-

Oxford-

38

webinos SHALL allow

policies which specify

confirmation at runtime

by a user when an access

request decision is

required

See WAC.

* WOS-UC-TA9-

002: Interpreting

policies and

making access

control decisions

Policy layer

Application policies and protection

ReqID Requirement Notes Use Case Refs Review Architecture Priority

PS-USR-

Oxford-

115

webinos SHALL encourage good

design techniques and principles so

users are not forced to accept

unreasonable privacy policies and

access control policies. webinos

Applications SHALL be designed with

user policy negotiation and

preferences in mind.

APIs, Apps,

Dev tools

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 49 of 276

PS-USR-

Oxford-

72

The webinos System SHALL support

applications which apply access

control policies to data produced or

owner by the application developer.

These policies MAY support

revocation of access control

permissions

WOS-UC-TA4-013

WRE

Phase

2

PS-USR-

Oxford-

36

webinos APIs shall provide error

results when an access control

request is denied Developers SHALL

be aware of how to program for

graceful handling of access control

requests.

* WOS-UC-TA9-

002: Interpreting

policies and

making access

control decisions

WRE, Policy

layer

Phase

1

PS-USR-

Oxford-

34

webinos shall provide complete

mediation of access requests by

applications and enforce all policies

* WOS-UC-TA9-

002: Interpreting

policies and

making access

control decisions

WRE

Phase

1

Device discovery, communication and authentication

ReqID Requirement Notes Use Case Refs Review Architecture Priority

PS-USR-

Oxford-

5

The level of authority associated

with a client webinos device SHALL

be established before an

association is established with a

webinos cloud. How is

authorisation and access control

defined by webinos?

* WOS-UC-TA1-008:

webinos Federation

Policy layer,

Comms

PS-USR-

Oxford-

17

The webinos Runtime Environment

SHALL be capable of setting

dynamic access control policies for

device data when initiating an

association to another webinos

Device. What format do these

access rules take?

* WOS-UC-TA4-014:

Continuous sharing

of a medical file

through webinos

enabled devices

WRE, UI,

Policy

Sharing and protecting personal and contextual data

ReqID Requirement Notes Use Case Refs Review Architecture Priority

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 50 of 276

PS-DEV-

Oxford-

28

The webinos Runtime SHALL

provide access control for

context structures with user-

defined policies

* WOS-UC-TA7-008:

Create contexts from

a pre-defined

template

WRE, API,

Policy layer

Phase

1

Privilege apps for Device Manufactures

ReqID Requirement Notes Use Case Refs Review Architecture Priority

PS-

USR-

TUM-

*(124)

webinos SHALL provide

privileged apps and

services to support the

trust based factor for

the device

manufacturers, for the

applications that access

wide range of critical

information from

vehicle data, mobile,

setupbox will have to be

approved by the

manufacturer of the

device

Let there be a signed

certificate, Identity and

Integrity checks for

widget based Apps.

Protection and Security

from hacks at the

runtime and accessing

sensitive API's. To

support these

Cryptographic methods,

Encryption code SHALL

be used. The Apps SHALL

be signed and confirmed

by the Device

Manufacturer when

using Sensitive API's and

Critical data, there SHALL

be a Monitoring system

which checks and

manages that there is no

access to critical data like

Engine Diagnose API's

and HW data.

* WOS-UC-

TA8-002:

Interpreting

policies and

making access

control

decisions

Comms,

WRE

Note:

 The geolocation could possibly be also provided by the vehicle API, but we have already the

Geolocation API.

 Applications using the vehicle API have to be approved by the manufacturer of the

vehicle/Device. If the application is not approved, then the application cannot access the vehicle

API.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 51 of 276

Analytics

Definition of analytics

Analytics is the epitomy of Business Intelligence (BI) science born by the overwhelming wealth of

information in the cloud and the shockingly detailed digital trail left throughout the user journey. It is a

mix of advanced statistics and data mining techniques which combine, homogenize and translate this

wealth of digital information from disparate sources, into actionable business intelligence.

Applications of Analytics solutions include:

 hardware/network/application troubleshooting,

 hardware/network/application performance optimization,

 usability testing,

 Security analysis/forensics

 marketing:

- usage tracking

- recommendations,

- targeting,

- campaign performance tracking & management,

- sales tracking

Analytics solutions are also categorized based on the available measuring/probing points: device (on

chip), network (transport, IP & DPI), Web (http), application (in app), app store (sales). Since the

webinos platform will reside between the transport layer of the network and the actual application (as

part of the Web run-time) the closest category is "application (in app) analytics".

Key issues & challenges of analytics solutions
 visibility: an analytics solution is inherently limited by the data that can be collected e.g. an

application has no "visibility" about what the user is doing with other applications.

 device issues: caching (device caching consumes memory), processing cycles and device battery,

 data homogenization across devices and services: different devices and platforms produce

different kind of data that need to be "normalized" in order to be comparable.

 privacy issues of data gathered

 data ownership issues of analytics (who owns the insights about the users data?)

It is also important to mention that the value (and main challenge) of an analytics solution is in the

actual analysis (define meaningful and actionable 'recipies') & reporting. This however depends on the

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 52 of 276

actual BI application. Therefore, at platform level, the aim is only to provide the means to easily collect

and log information.

To this end, webinos is a game changer from existing platforms in that it enables:

 a uniform interface for extraction of information across many different device domains; car, pc,

home media, mobile

 a uniform interface for extraction of information across service domains.

 webinos has a strong security framework which provides a solid mechanism for ensuring that

privacy control is in the hands of the user.

 webinos authentication mechanism enables tracking of usage across devices / services without

the need for separate logins

The combination of these enablers give webinos a big advantage of end-to-end visibility across devices,

services, networks and usage contexts.

Analytics solutions high level architecture/work-flow

 define metering rules (what/when/how to capture)

 deploy metering rules

 capture/metering based on metering rules and privacy/security settings

 transfer and store data to (log)

 homogenization (if necessary across devices)

 transfer to analysis engine/repository

 production of actual analytics processing - report

Note: The word Metering refers to the low-level process of collecting/measuring & recording data

points and event triggers, i.e. without any kind of further processing,

normalization or analysis. Metrics are therefore the directly measurable events and data points.

Analytics refer to the product(s) of the statistical analysis of those metrics.

The architecture can be divided in three parts based on different sets of implementation requirements:

 platform: definition and deployment of metering rules, data capture and local (within personal

network) storage

 implementation: data homogenization and transfer to analysis engine (and potentially to

external repository)

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 53 of 276

 application dependent: data mining and statistical analysis for the generation of business

intelligence and reporting

To this end, WP3 activities are only concerned about platform related issues. Implementation and

Application dependent issues may be investigated as part of a WP5 proof-of-concept application

implementation.

References to requirements
The need to provide support for analytics at platform level has been identified in the following webinos

requirements (see Deliverable D02.1 Use cases & requirements).

ID Description

WOS-US-7.4 Privacy Controls and Analytics for Corporations and Small Businesses

WOS-UC-TA8-013 Collecting Analytics from webinos Applications

WOS-UC-TA8-014
End User cross Platform Privacy Analytics in Healthcare, Smart Grids and

Home Environments

What's in scope

 Identify an initial list of "meterable" data points and events based on existing list of APIs

 define metering rules (what/when/how to capture)

 define necessary privacy/security policies

 data capture/metering based on metering rules and privacy/security policies

 deploy mechanism for metering rules (how is the metering client/logging mechanism getting

updated with new rules over-the-air)

 transfer and store data to (log)

What's out of scope

Deferred to second phase:

 provision for complex metering rules which may involve more than one-state, data point

(pattern/sequence signatures)

May be implemented as part of proof-of-concept applications (WP5):

 homogenization of data across device and services (if necessary)

 data transfer to analysis engine/external repository

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 54 of 276

 implementation of an actual analytics processing & reporting engine

Review of State of the Art
Existing analytics platform provider are split broadly in two categories: Web and application-based. For

mobile telecoms three more categories exist, namely: mobile messaging, SIM and network.

The categories are defined based on the metering software touch-point, i.e. its visibility in terms of

available data and event triggers.

Here follows an overview of some prominent commercial application analytics solution providers:

Distimo http://www.distimo.com/

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line

App Store Analytics (no device client)

Distimo Report custom reports aimed to companies providing insight into trends happening within

application stores.

Distimo Monitor free analytics tool for developers to monitor their own and competitive applications

across all app stores

Core product e.g. application analytics SaaS, custom reports, app store analytics

(App Store Analytics - no device client)

Distimo Report: custom reports aimed to companies providing insight into trends happening within

application stores.

Distimo Monitor: free analytics tool for developers to monitor their own and competitive applications

across all app stores

Platform targets e.g. iOS, Android, or app stores supported

Distimo Monitor: Apple, Android already; Blackberry, Nokia Ovi in 2010

Distimo custom reports are currently available for the Apple App Store for iPad, Apple App Store for

iPhone, BlackBerry App World, Google Android Market, Nokia Ovi Store, Palm App Catalog and Windows

Marketplace for Mobile.

Data ownership and privacy

n/a

Type of analytics e.g. app store, in-app, billing, Web

app store

Bango http://bango.com/

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line

Mobile Billing: in-app and mobile websites (credit card, paypal, in-bill)

Mobile Analytics: mobile Web and campaign analytics, in-app analytics

Core product e.g. application analytics SaaS, custom reports, app store analytics

http://www.distimo.com/
http://bango.com/

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 55 of 276

Mobile Billing: in-app and mobile websites (via credit card, paypal, on-bill)

Mobile Analytics: mobile Web and campaign analytics, in-app analytics (unique users, avg session

length, avg sessions per day traced by specific Web calls).

Platform targets e.g. iOS, Android, or app stores supported

Libraries for probing on the application side and Web-API are provided.

Data ownership and privacy

Data ownership is offered for a premium. Data are accessed by all subscription packages with timeframe

limitations.

Type of analytics e.g. app store, in-app, billing, web

web; in-app; billing (via own solution)

AT Internet http://atinternet.com/

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line

Web/ecommerce/mobile/social networking analytics;

tagline: How to help with the challenges of customer acquisition, transformation and retaintion.

Core product e.g. application analytics SaaS, custom reports, app store analytics

Service analytics: through reports provide information like connection type (wify/network) what's the

speed , network provider;

Mobile and Campaign: originally was only focused on mobile websites, last couple of years developed

solutions to provide app level (usage) e.g. number of times used, number of crashes, navigation through

app, popular pages, offline data and how is being used.

Social media: BuzzWatcher measures activity on social media channels (including social networks, video

platforms, RSS feeds, blogs etc,) in real time.

mobile nx ""module"" is the web-side component which integrates with the ""digital workspace""

dashboard (server performance, Web analytics, social media, mobile analytics). Libraries for probing on

the application side are provided.

Products are defined by what data collection method you use (i.e. probing points) - mobile is: tags for

mobile sites, behavior, apps, purchase and offline usage info

Platform targets e.g. iOS, Android, or app stores supported

in-app analytics: Symbian, iOS, Blackberry, bada, Android.

Data ownership and privacy

n/a

http://atinternet.com/

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 56 of 276

Type of analytics e.g. app store, in-app, billing, web

web; in-app; e-commerce (via own solution)

Flurry http://www.flurry.com/

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line

application analytics

tagline: aiming to make the life of developers and publishers easier.

Core product e.g. application analytics SaaS, custom reports, app store analytics

Analytics: core free in-app analytics solution with libraries, Web dashboard and reporting interfaces, and

API access to the data.

Analyzer Mobile: targeting service for applications;

Appcircle: affiliate network for recommendation engine.

Developers have free access to event data and reports via API and can download via Web interface as

"".csv"".

Platform targets e.g. iOS, Android, or app stores supported

iOS, Android, Blackberry and Java

Data ownership and privacy

Flurry keeps data for in-house analytics and benchmarking in "aggregate" form. Anonymity is ensured in

Ts&Cs.

Type of analytics e.g. app store, in-app, billing, web

in-app

Localytics http://www.localytics.com/

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line

Mobile application analytics

Core product e.g. application analytics SaaS, custom reports, app store analytics

2-tier Application analytics solution:

1: library/sdk for integration in app during building (Open Source Software)

2: Web portal/service which collects the data and processes in real-time (reportedly 2-3 mins update).

offered in Community (free) and Enterprise (paid) editions.

Localytics Enterprise service builds on the Community version adding the following premium features:

- Bookmark / save charts

- Export session data for integrating mobile analytics data with other enterprise reporting packages.

http://www.flurry.com/
http://www.localytics.com/

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 57 of 276

enteprise customers can access the raw data. free users can only download generated reports

- Data export API for integrating mobile analytics data with other enterprise reporting packages.

free users only via website

- Location services

- Optional first-party analytics

Platform targets e.g. iOS, Android, or app stores supported

iPhone, iPad, Android and BlackBerry

Data ownership and privacy

Based on level of agreement:

Enterprise customers: don't use or publish data without approval.

Free users: not-uniquelly identified customers and people without approval.

Type of analytics e.g. app store, in-app, billing, web

in-app

Mobixy http://mobixy.com

Main proposition e.g. application analytics SaaS, custom reports, app store analytics - tag line

Mobile data analysis and management solutions.

tagline: mobixy provides mobile data analysis and management solutiosn for marketers and product

managers. (beyond the if and answer the question of what/when/how/why)

Core product e.g. application analytics SaaS, custom reports, app store analytics

Data analytics: in application events and interactions between application and Web services (e.g. yahoo

or google apis), location and context, on/off : load times, response times for screen loading etc.

Currently integration only via API. Wrapper libraries will be available probably end of month.

Data management: Mobixy monitors device and network connectivity (speed, device type etc) so they

can profile the session and optimize the stream/be selective in the order of information transactions

with the Web.The aim is to enable the developer to prioritize the data that are being retrieved from the

""cloud"" or any REST Web service. Automatic optimization can then establish which data ""blocks"" can

be left out/postponed dynamically based on device and connection performance.

e.g. So the developer can optimize the data or detect why some parts are not being used (e.g. maybe

they are very slow to load)

Platform targets e.g. iOS, Android, or app stores supported

in-app analytics: currently available via API and is being encapsulated in a library. Library available for

iPhone. Roadmap: Java Android, Blackberry and later Windows.

Data ownership and privacy

http://mobixy.com/

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 58 of 276

mobixy doesn't reuse any of the logged information.

Developer/publisher can opt-in marketing program and share aggregate information with marketing

partners of mobixy.

Type of analytics e.g. app store, in-app, billing, web

in-app; Web and data services (API/REST) application interactions

Recommendations from state of the art

Currently, Localytics (http://localytics.com) is the only commercial end-to-end application analytics

platform provider (both client libraries & server components for in-house hosting). Two other

companies which offered similar solutions are: Appclix (closed beta since late-2010 no trace of activity

since) and Motally (purchased by Nokia 4Q2010 and discontinued products).

Localytics is also the only solution which offers a public version of the source code under a BSD-derived

open source license (http:// wiki.localytics.com/doku.php?id=the_localytics_modified_bsd_license).

Due to the lack of openly available code bases, technical specifications or standardization efforts to

date, webinos could potentially offer a reference open implementation for such systems. To head start

the specification and development of the metering/analytics functionality webinos can leverage the

open source version of the Localytics code base.

http://localytics.com/
http://wiki.localytics.com/doku.php?id=the_localytics_modified_bsd_license

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 59 of 276

4. High level overlay architecture

Architecture

This section will describe the webinos architecture, which is centered on the notion of a Personal Zone

as a means to organize your personal devices and services. Each device, whether it be a mobile, tablet,

desktop, TV or in-car head unit, includes a Web browser that is extended to enable the device to be a

part of the Personal Zone. The Personal Zone Hub runs on a Web server with a public URL, and provides

the means for other people to access your devices and services subject to your preferences. All devices

in the Zone have access to a shared model of the context, this allows them to operate when offline, or

when temporarily unable to access the Internet.

The webinos architecture seeks to make it easier for Web application developers to create applications

that span devices and firewalls. This is achieved through:

 Logical communication paths based on trust relationships, and decoupled from underlying

interconnect technologies

 Simple access to local and remote services

 Simple discovery of devices/services

 Trust based on social relationships between people

 Adaptation based upon access to the context

The simplicity of the high level APIs for Web application developers is realized through 3rd party

components that layer on top of lower level APIs and mask the complexity involved. It is anticipated that

this will lead to a market for such components as demand is stimulated by the continuing evolution of

devices and interconnect technologies. This in turn will feed the market for services provided by Web

developers. This report mainly focuses on the high level APIs exposed to Web developers, and further

reports are expected to elaborate on the lower level APIs and protocols as a basis for interoperability

across implementations of the webinos platform.

Applications and Services

Applications may be downloaded and installed on devices, or they may be hosted by servers, with

components that are dynamically downloaded when needed. Applications can make use of services, and

in turn can provide services. Services may include a user interface exposed as part of an application, e.g.

within an HTML iframe element. The ability to combine and tailor services is used to support "mashups".

Applications are essentially services that can be installed or bookmarked.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 60 of 276

Personal Zones

We individually own an increasing number of devices, for instance, a smart phone, tablet and desktop

computer, TV, and other consumer devices. The Personal Zone provides a basis for managing your

devices, together with the services you run on them. This includes personal services you use in the

Cloud. The Personal Zone supports:

 Single sign-on, where you authenticate yourself to a device, and the device authenticates to the

zone. This avoids the need for establishing direct peering relationships between each pair of

devices. It also allows for stronger authentication with the services you use. No more typing

user ids and passwords into Web page forms! Note that the architecture allows for situations

where you are offline, e.g. when you are away from home and are currently unable to access

the Internet.

 Shared model of the context. This covers users, device capabilities and properties, and the

environment. It enables applications to dynamically adapt to changes, and to increase usability

by exploiting the context.

 Synchronization across the devices in the zone. This includes support for distributed

authentication, as well as personal preferences, and replication of service-specific data, e.g.

social contacts, and appointments. Synchronization is essential for supporting offline usage.

 Discovery and access to services. This includes local discovery, e.g. of services exposed by your

devices, whether connected through WiFi, Bluetooth, or USB, as well as remote discovery for

services exposed in the Cloud. The high level discovery API allows Web developers to search for

all local services, or to filter by service type and context, or even to locate a named service

instance. Remote discovery is based upon the URL for a Personal Zone, or an email address or

phone number, or even someone's name or pseudonym.

 Licenses for the services you have purchased and run as part of your Personal Zone. This

includes locally installed applications and hosted applications, dynamically loaded from Web

servers. The aim is to provide an open market for Web developers that is not controlled by a

single vendor.

 Trust relationships based upon social graphs. You have full access to all of the devices in your

Personal Zone, as well as to shared devices, e.g. a network enabled TV that is accessed through

the home's WiFi network, and shared by all family members. You can determine which of your

devices are visible to your friends, and what services they can make use of. This is based upon

preferences associated with your social graph. The preferences are updated as you make

decisions in the course of using services, or through a Zone preference editor.

Binding, privacy and security

The webinos platform provides each device with an API for accessing services exposed directly by the

Personal Zone. An example is the method used to discover services matching the given service type and

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 61 of 276

context constraints. The method is asynchronous, and results in call backs as service instances are

discovered. Developers can then provide a user interface for selecting between alternatives, where the

list is dynamically updated as services become available or cease to be available. The approach allows

Web developers to offer users the means to obtain further information about each of the choices, as

well as to record preferences for use in future situations.

The process of binding to a service (having first discovered it) involves:

 mutual authentication, where the Zone authenticates the service, and the service authenticates

the Zone

 secure communication through the use of transport or application layer encryption, and checks

against man in the middle attacks, spoofed IP addresses and spoofed DNS records

 agreement on data handling obligations as set out in the service's privacy policy

 reviewing and granting the request by the service for elevated privileges

The architecture allows for an extensible set of authentication technologies, including those needed for

existing (non-webinos) services, such as Facebook. Users are able to set up multiple pseudonymous

identities and to choose which of them should apply in the current situation. Webinos-based services

provide authentication requirements and account management information expressed in JSON. To cater

for privacy, webinos provides support for machine interpretable privacy policies based upon a subset of

P3P also expressed in JSON, together with a link to full human readable policies. Users can further make

use of third party assessments of services, e.g. black lists of harmful services, and crowd-sourced

assessments. The webinos platform provides a secure basis for executing applications in which error

prone features are disabled by default, where such features are a common source of attacks.

Applications (or embedded services) can request elevated privileges. This is typically handled when the

application first runs, and the user's decision recorded for subsequent uses. A Zone API enables

applications to request a list of privileges, and should be accompanied by information on what the

application needs these for. The underlying model is that of notice and consent. The associated user

interface is provided by the webinos platform, and not by the applications. A further user interface is

provided to enable users to review and revoke decisions. The device itself may impose security policies,

e.g. white listing which services may have particular privileges.

Extensibility

The webinos platform APIs are designed for extensibility. It is common to pass an object as an argument

to a method where the object supports one or more interfaces. These interfaces are interpreted by third

party components, and such third parties are also responsible for documenting the extensions. Web

developers can call a standard QueryInterface method to cast an object to a named interface, when

necessary to avoid name clashes.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 62 of 276

Events or call -backs

Having been discovered and bound, a service is exposed as an object in the Web page's script execution

environment. This object acts as local proxy for the service, which may be provided by a remote device.

A design decision is whether to support DOM eventing along with the capture/bubble module. The

alternative is to allow Web page developers to register a simple call back function, or to pass an object

supporting a given interface, i.e. with a named method that is used as a call back. The DOM eventing

model fits well when markup elements are used as proxies for services, with the content of the element

acting as constraints on the service type and context.

Webinos in the browser

A "webinos" object is exposed as part of the global namespace for Web page scripts, and provides the

core set of webinos APIs as methods and properties. The implementation may further involve scripts

and other resources running as part of browser extensions (Chrome extension or Firefox addon). These

may in turn make use of browser (NPAPI) plugins or local servers where native code is needed for

discovery or for service adapters, etc. An example is the discovery of devices connected via USB, where

a native code driver is dynamically loaded based upon the vendor and product ids. Service adapters may

involve a combination of a low level native code driver together with a script library to interface the

service to Web page scripts.

Synchronization and secure storage

Every webinos device will need some secure storage to support authentication, personal preferences,

policies and other data requiring synchronization. Synchronization involves detecting and merging

differences, and asking the user to resolve conflicts, taking into account periods of offline usage. The

process involves a comparison of clocks as a basis for correcting for skews prior to comparing the time

of each change. The approach is inspired by work on distributed revision control and 3 way merge

algorithms for tree structured data. Synchronization takes place when a device connects to the Personal

Zone, and when changes occur. This is also coupled with local discovery, to enable a shared model of the

context. For IP-based networks, multicast announcements and query responses can be observed to

update a local cache. Information which needs to be kept private can be protected and accessed

through HTTP together with transport layer security (TLS) and authentication. Different parts of the

context have different security requirements, and it may be appropriate to encrypt them with different

keys.

The Personal Zone is exposed as a local API in each webinos enabled device. This needs to function even

when the device is operating in isolation, or with a subset of devices in the absence of access to the

Internet. This relies on being able to synchronize the devices in a peer to peer model. Synchronization

depends on being able to merge changes, and to detect and resolve conflicting changes. If the context

data model is independent, then one approach is to simply take the latest change to a particular part of

the context. If the context data model has inter-dependencies, the updated model needs to satisfy the

integrity constraints. A transactional treatment of changes can help with this, as well as with providing

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 63 of 276

support for rolling back changes. Synchronization and secure access to the context form a crucial part of

the webinos platform. Browsers already support mechanisms for recording preferences and application

specific storage, e.g. cookies. Webinos could build upon this with additional database files held as part

of the browser profile, and accessible from trusted code in browser extensions.

Personal Zone Hub

To enable external access to your zone, webinos defines a Personal Zone Hub (PZH) as a service that is

accessible via the public Internet. This could for instance, be provided as a value-added service to users

by Internet Service Providers or it could be integrated in the DSL router at home. The Personal Zone Hub

is identified by a URL and supports a RESTful API based upon JSON RPC. The hub is part of your Personal

Zone and supports access by you from other devices, e.g. when you walk into an Internet Cafe, enabling

you to access your Zone's devices and services for the duration of a browsing session. It also enables

access by others, subject to the policies that you have defined.

Personal Zone Hubs collectively form a federated social Web with support for social messaging based

upon your relationship to other people. For instance, you could keep a diary and allow your friends to

add comments. Your Zone Hub can subscribe to near instant notifications when a topic (feed URL) you

are interested in is updated. You can install third party social applications to suit your interests.

The Personal Zone Hub further provides support for discovering other hubs based upon someone's full

name or pseudonym. This is implemented as a federated discovery process across hubs, starting from

your own hub. The results are ranked according to a measure of social relevance, drawing upon

information provided in your profile, or gleaned from other sources. The process is trusted with access

to personal data for ranking purposes, but is designed to avoid disclosing such data, except as permitted

by the owner's policies. Distributed hash tables provide a solution for locating candidate matches, but

further work is needed to determine the best approach for implementing a scale-able solution for

privacy friendly ranking of results.

Personal Zone Hubs can also be discovered starting from someone's email address or phone number.

The email addresses domain name can be used to locate a query service (typically provided by the

domain owner). Note that users may choose to limit discovery, e.g. to people within a given group, or to

prevent discovery altogether, in which case it is up to the user to communicate the URL for their

Personal Zone Hub to others as needed.

NAT traversal and efficient use of communication networks

The Personal Zone Hub supports the establishment of UDP or TCP connections across well behaved

Network Address Translation boundaries. This will not normally affect Web developers, as the webinos

platform hides the establishment of such connections. The Personal Zone Hub can also help with the

efficient use of communication networks, e.g. by tunneling events through a shared connection rather

than setting up new peer to peer connections, which is expensive on current mobile networks. Common

NAT devices have TCP session timeouts of 30 minutes to several hours versus just a few minutes for

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 64 of 276

UDP. Longer lived connections can be realized at a virtual level, with SMS wake up messages to re-

establish lapsed connections, providing a means for maximizing battery life on mobile devices.

Key architectural components

This section defines the roles and responsibilities of the key architectural components in webinos and at

a high level defines the logical flow and process during normal webinos interactions.

Webinos builds upon the state of the art for Web applications. Taking HTML5 and W3C DAP

technologies as a foundation, it extends these concepts to allow for the following:

 Applications which make optimal use of the resources on the featured devices of TV,

Automotive, Tablet, PC and Mobile

 Applications which interoperate over diverse device types

 Applications which can make user of services on other devices owned by the same person

 Applications which can make user of services on devices owned by other devices

 Discovery mechanisms to find services, devices and people, on multiple network types - even

when they are not connected to the internet

 Efficient communication mechanisms, that can pass messages over different physical bearers,

can navigate firewalls, and make sensible use of scarce network resrouces

 Strongly authenticated, communication mechanisms that work bi directionally - we know we

really are talking to the remote service, device we thought we were - tackling head on the

spoofing and phishing weaknesses of the Web

 And finally, implementing distributed, user centric policy:

o allowing the user to define what applications work on what devices,

o to define what information is exposed to other services

o and ensuring these capabilities are interopable and transferable - ensuring a user stays

in control of their devices and their applications

Webinos Web Runt ime (WRT)

A webinos Web runtime, is a special type of browser. It should be capable rendering the latest

JavaScript, HTML4/5 and CSS specifications. It is responsible for rendering the UI elements of the

webinos application

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 65 of 276

A webinos WRT must be able to access the webinos root object from JavaScript. Via this root object the

third party developer will be able to access the webinos functionality.

A webinos WRT differs from a normal browser or Web runtime in that all extended JavaScript functions

as well as some normal browser behaviours (such as XHR) must be mediated by the webinos policy

enforcement layer.

A webinos WRT will present environmental properties and critical events to the Personal Zone Proxy

(PZP) so that it may process the security policy and contextual events, correctly.

A webinos WRT should be deemed tightly bound to the Personal Zone Proxy (PZP).

There is special case of WRT that binds to the PZH not the PZP, hence server vs device centric. This

variant is called a Server Based Runtime (SRT), rather than a WRT.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 66 of 276

Specification areas

The web runtime component must implement the following aspects of the specification

 Foundations:

o Rendering and code: the WRT must be compliant with all the HTML5, CSS, JavaScript

versions defined in the foundations document

o Packaging: the WRT may be responsible for unpacking the application manifests (W3C

widget specification). However, in the implementation phase we may also evaluate the

advantages of performing the processing of this at the Personal Zone Proxy (PZP)

instead

 Security:

o PIP: the WRT must act as a policy information point for the webinos policy. In other

words the WRT must provide "security context" and call backs into the PEP (Policy

enforcement Point) which resides within the Personal Zone Proxy (PZP).

 APIs: the WRT MUST provide the webinos object at document level upon which all the webinos

objects and methods may hang. In the implementation phase we shall evaluate the pros and

cons of implementing the APIs within the WRT natively vs

webinos Perso nal Zone Hub (PZH)

The Personal Zone has already been introduced in the Overlay Networking Section.

The Personal Zone is a conceptual construct, that is implemented on a distributed basis from a single

Personal Zone Hub (PZH) and multiple Personal Zone Proxy (PZP)s

The critical functions that a Personal Zone hub provides are:

 An fixed entity to which all requests and messages can be sent to and routed on - a personal

postbox as it were

 A fixed entity on the web through which requests and messages can be issued, for security and

optimisation reasons.

 An authoritative master copy of a number or critical data elements that are to synced between

Personal Zone Proxy (PZP)s and Personal Zone Hub (PZH), specifically

o Certificates for Personal Zone Hub (PZH), Personal Zone Hub (PZH) mutual

authentication

o Hashes for user authentication

o Certificates to authenticate PZXs of trusted people against each other

o Application identifiers (and/or certificates) of applications granted access into the zone

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 67 of 276

o Service identifies (and/or certificates) for trusted services to which the personal zone

may attach

o (Subject to investigation) device identifiers, to assist with platform integrity tests

o (Subject to investigation) credentials for "non webinos" services to give a pseudo single

sign on experience

o All policy rules, for distributed policy enforcement

o All relevant context data

 The functions therefore that a Personal Zone Hub (PZH) can support are

o User authentication service

o Personal Zone Proxy (PZP) secure session creation for transport of messages and

synchronisation

o Service session creation for secure transport of messages between applications and

services

o Secure social networking: using the exchanged certificates between trusted people

o Potentially: single sign on service to other web services, using the Personal Zone Hub

(PZH) as a secure proxy

 A webinos service host: a Personal Zone Hub (PZH) can host directly Services/APIs that other

applications can make use of.

 Context sync: the Personal Zone Hub (PZH) should act as the master repository for all context

data

 A webinos executable host: a Personal Zone Hub (PZH) will be able to run a server resident

webinos applications (these will be JavaScript program files wrapped in a webinos application

package)

Specification areas

The Personal Zone Hub (PZH) component must implement the following aspects of the specification

 Foundations:

o Rendering and code: the Personal Zone Hub (PZH) will run server resident webinos

applications using node.js or similar

o Packaging: the Personal Zone Hub (PZH) should be capable of unpacking and performing

security checks on packed widgets

 Security:

o The Personal Zone Hub (PZH) must store the policy files

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 68 of 276

o The Personal Zone Hub (PZH) should act as a server based Policy enforcement point-

therefore must mediate all relevant traffic

 Messaging: the Personal Zone Hub (PZH) must be able to route messages to the relevant

Personal Zone Hub (PZH) or Personal Zone Proxy (PZP), or in cases where the message is routed

to a locally hosted service, pass it for execution

 Synchronisation: the Personal Zone Hub (PZH) must implement the synchronisation algorithm

and process synchronisation protocol messages.

 Authentication:

o the Personal Zone Hub (PZH) must allow for a user to authenticate, or raise their

authentication level.

o the Personal Zone Hub (PZH) must authenticate Personal Zone Proxy (PZP)s and other

users to set up trusted sessions

webinos Personal Zone Proxy (PZP)

The webinos Personal zone satellite proxy, acts in place of the Personal Zone hub, when there is no

internet access to the central server.

In order to act in its place, certain information needs to be synchronised between the satellites and the

central hub.

This information has already been listed above.

The Personal Zone Proxy (PZP) fulfils most, if not all of the above functions described above, when there

is not Personal Zone Hub (PZH) access

In addition to the Personal Zone Hub (PZH) proxy function, the Personal Zone Proxy (PZP) is responsible

for all discovery using local hardware based bearers (Bluetooth, ZigBee , NFC etc)

Unlike the PZH, the PZH does not issue certificates and identities.

For optimisation reasons PZPs are capable of talking directly PZP-PZP, without routing messages through

the PZH

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 69 of 276

Specification areas

The Personal Zone Proxy (PZP) implements all of the above functions, with the following differences

 Messaging:

o A Personal Zone Proxy (PZP) routes all "internet" messages to the parent Personal Zone

Hub (PZH) for distribution

o A Personal Zone Proxy (PZP) routes all "local" messages to the relevant local device,

using

 Discovery: the Personal Zone Proxy (PZP) must implement a full array of local device discovery

protocols.

 Security:

o the Personal Zone Proxy (PZP) is THE primary policy enforcement point for all

application processing

o the Personal Zone Proxy (PZP) will attest to the integrity of other key components on

the device

 Packaging: a Personal Zone Proxy (PZP) may optionally - subject to investigation - perform

webinos application package processing and integrity checking on behalf of the WRT

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 70 of 276

webinos Application

A webinos application runs "on device" (where that device could also be Internet addressable i.e. a

server).

A webinos application is packaged, as per packaging specifications, and executes within the WRT.

A webinos application has its access to security sensitive capabilities, mediated by the active policy.

A webinos application can expose some or all of its capability as a webinos service

An application developer is granted access to webinos capabilities via the webinos root JavaScript

object.

Specification areas

An application developer needs to be aware of the following parts of the specification

 Foundations: an application needs to packaged and programmed according the foundation

specification

 APIs: a developer has access to the rich set of capabilities defined within the API specification

o infrastructure capability: much of the intelligence of webinos is provided transparently

to users. However certain key functions, such as discovery, and service binding, are

provided

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 71 of 276

webinos Service

A webinos service is a collection of functions and events, that are accessible by an webinos

application

These functions and events are always presented to the application developer as a set of JavaScript

functions, no matter where the implementation resides.

There exist the following sub-types of webinos services

1. native device webinos APIs: such as specified in deliverable WP3.2. These may be implemented

on the same device on which the application resides, and the implementation may be provided

through a JavaScript binding to native code, via plugin technologies such as NPAPI, or indeed

hard-coded enhancements to a JavaScript engine. Access to the API must still be mediated by

the PEP (policy enforcement point) within the Personal Zone Proxy (PZP)

2. remotable smart-device hosted webinos APIs: APIs that can be accessed remotely (using JSON

RPC). A remotable webinos API is hosted by a Personal Zone Proxy (PZP) and again access is

mediated by the PEP on the Personal Zone Proxy (PZP) of caller AND the Personal Zone Proxy

(PZP) of provider

3. remotable dumb-device hosted webinos APIs: As above, where the device is not a smartphone,

PC or tablet, but a small sensor-like device which has its own Personal Zone Proxy (PZP) and

therefore can directly authenticate to the PZ and communicate via JSON RPC

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 72 of 276

4. remotable super-dumb-device: as above but device is even more lightweight - and cannot talk

webinos directly. Instead a host device presents as webinos driver (a mini Personal Zone Proxy

(PZP)) that can communicate natively to the super-dumb-device and transcode the bi-directional

comms into webinos protocols.

5. remotable server hosted APIs: these are web services, accessible JavaScript (using JSON RPC).

These are hosted by a Personal Zone Hub (PZH) and security mediated by the PEP within the

Personal Zone Hub (PZH)

6. application hosted APIs: a full application, which is hosted by the WRT may present external

services (JavaScript APIs) that other applications can then make use of

Specification areas

A webinos service must take note of the following parts of the webinos specifications

 Discovery: a service must be discoverable and be able to describe itself to the application in

accordance with the discovery specification

 Messaging : a service must be able to receive and respond to incoming RPC messages

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 73 of 276

Local Connections

One of the critical innovations of webinos, is the virtual overlay network that allows different

applications and services to talk to each other over many different interconnect technologies.

Not only are the interconnect technologies for local messaging, there are three different scenarios in

which this communication can take place

These are highlighted in the diagram below.

In turn:

1. Connecting to a full smart device, that hosts both a PZP (therefore can host native APIs

presented as services) and a WRT (so can host webinos applications exposing webinos services)

2. Connecting to a dumb device, it hosts a PZP but not a WRT. This means that it can expose only

native APIs, not webinos applications

3. Connecting to a super-dumb device, it hosts neither a PZP nor a WRT, but can expose webinos

services - if the client PZP hosts a customised driver

Specification areas

The personification that outline the detail of these connection scenarios are to be found in

 Overlay networking

 Discovery

 Messaging

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 74 of 276

Sessions

A functioning webinos network will consist of, multiple devices, multiple servers and multiple

applications. It will require the interaction of PZPs and PZHs belonging to different users, over multiple

different networks.

Within that complex interaction, there will be many notions of session at different levels. It is important

therefore to be clear with our terminology.

Intra Personal Zone Relations
A single user will have many PZPs, on different devices, but only a single PZH, hosted on the Web.

PZPs need to be installed securely on devices PZP installation bootstrap, however once this is done a

long term relationship now exists between that PZP and the PZH. We will call this an "Intra Personal

Zone Pairing". This pairing shall be manifest by the PZP and PZH having exchanged certificates. Section

Conceptual Architecture explains the details.

If a pairing exists between a PZP and a PZH they should try to enter an active Intra Personal Zone Session

with one another.

PZP-PZH sessions (Intra Personal Zone Sessions) always take place of the publicly addressable internet.

This is because one of the defining characteristics of a PZH is that it is must be permanently addressable

on the internet. A PZP-PZH session takes place over a TLS connection, assuring that the information

http://dev.webinos.org/redmine/projects/wp3-1/wiki/PZP_installation_bootstrap
http://dev.webinos.org/redmine/projects/wp3-1/wiki/Spec_-_Authentication#Conceptual-Architecture

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 75 of 276

exchanged in the session is secure. This secure channel, once established is the route via which all

communications between PZH and PZP, in either direction, takes place.

Note: as an optimisation out of band "wakeup" notifications may be required to issue PZH->PZP

messages in a timely fashion. These out of band notifications should only contain the bare minimum

information to request the PZP reactiviates the connection. No sensitive information should be passed

in the wakeup notifications, as they are not protected by the TLS channel.

When and PZH and PZP session is active it means that messages can be routed in either direction, within

a reasonable time-frame. (In practice less than a pre-stipulated time-out value)

A session is established when a PZP and PZH have successfully authenticated.

When a session is successfully established between a PZP and a PZH, a bidirectional channel of

information is established across which all the following may happen

1. A PZP may authenticate/re authenticate against the PZH

2. Outgoing webinos messages to external services (multiplexed through the PZP-PZH channel)

3. Synchronisation traffic, of the following

1. webinos user identity information

2. webinos user data information

3. webinos PZP and PZH certificates

4. webinos policy

5. webinos friends identity information and certificates of their PZHs

6. webinos services tokens

7. webinos device identity tokens

8. webinos application identity tokens

9. webinos application data for synchronisation

External services relations

Individual webinos applications create "sessions" with webinos services.

All such sessions must be mediated by the PZP of the originating application. In other words only

application bound to a users PZP can make user of webinos services. The originating users PZP will take

care of authentication and the user centric policy enforcement.

The application can connect to two types of service:

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 76 of 276

1. anonymous service: this is a webinos service that is mediated by an un-authenticated personal

zone

2. PZ hosted service: that is a webinos service owned by someone. Note in this scenario the

permission to access to the services, is mediates by two policy enforcement points, the

requester of he service and the hoster of the service.

Much like intra zone sessions, there are distinct notions of "Pairing" and "Binding".

If an application has been "paired" with a service, tokens may be exchanged at the PZX level. This token

exchange can be used by the webinos infrastructure to short-cut authentication and permissions. The

active policies on any participating app-service flow, must still have this permission granted.

The process of binding an application with a service (irrespective of whether it has been already paired),

is akin to the notion of an intra zone session as described above. Whist the session is active, in other

words whilst the binding is fixed then:

 Messages can be routed bidirectionally, between app and service within a reasonable time

frame (within a pre stipulated time-out value)

External service sessions can happen over the public internet or via the local network

Public internet sessions to Web hosted services will be mediated by the PZH

Local webinos sessions to local device services (including also APIs local to the WRT) are mediated by the

PZP.

External service sessions can therefore be carried over a number of physical networks and higher level

protocols.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 77 of 276

5. Specification

The formal specification is broken into subject areas, each of which has its own section

 Core architecture and specification: defines the key architectural components and processes

that dictate how the webinos technology works together

o Foundations: by reference to the critical foundation technologies, such as core widget

packaging specifications, defines and extends the data formats and protocols required

to write and package applications, that interact with webinos.

o Authentication: defines the protocols required to authenticate the critical webinos

components against each other

o Discovery: covers the mechanism by which different services can be found over multiple

different networks.

o Messaging: webinos defines its own mechanism for efficiently pasting different message

types over the webinos overlay network

o Context: defines privileged mechanisms by which the contextual information and events

from multiple devices can be aggregated and supplied and later disseminated from the

Personal Zone Hub

o Security: outlines the critical security elements, which are explored in greater detail in

the Security Architecture definition

 APIs: formally defines the JavaScript APIs which a local application may discover and use on

device, and which may be invoked remotely from an application on another device

 Security: formally specifies the APIs, data formats and protocols required to implement a secure

distributed Web application execution environment

Foundations

The Foundations specification is about defining the structure of webinos applications and how they are

able to interact with webinos. This also includes packaging of applications, application APIs and

embedding webinos extensions in applications.

Formal Specification of webinos Application

A webinos application is defined as follows (citing D2.2):

An application written using webinos technologies that will run on a device, across a

range of devices reflecting the domains mobile, stationary devic es, automotive or home

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 78 of 276

media and/or server. The application will be able to securely and consistently access

device specific features, communicate over the cloud and adjust to the device and

context specific situation.

Webinos technologies include several existing and upcoming Web technologies, as well as webinos-

specific add-ons which enable applications to be developed for multiple platforms. This includes access

to device features, transparent communication across devices, and secure application execution. The

relevant Web technologies, if already available, are referred in the dedicated sections of this

specification.

A webinos application package consists of four types of metadata put together in an application

manifest file.

1. Application metadata provides human-readable semantic information about the application

itself, e.g., version, description, author etc., which can be presented to the user and is accessible

by the application using APIs.

2. The content provides all the application and layout logic and also media content such as images

and video needed by the application.

3. The deployment and configuration metadata provides information for the Web runtime about

how to deploy and install the application, e.g., whether the application can run in the

background or not and which view mode the application prefers to use. This metadata also

contains information about distributed application deployment as well as any additional

functionality the application will expose.

4. The runtime and execution metadata part of the application package provides information

about conditions which must be fulfilled to execute the application, e.g., fulfilled policies or

conditions under which the application may be automatically executed (non user driven).

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 79 of 276

Packaging

The core structure and content of webinos applications is defined through the W3C Widget Packaging

and Configuration [Widgets] specification. Webinos application packaging, as a superset of W3C Widget

packaging, adds some further features to this specification in order to meet additional requirements.

The following requirements show that webinos must conform to various W3C specifications.

WRT-01: The webinos WRT MUST be capable of processing widget packages as defined in [Widgets].

WRT-02: The webinos WRT MUST support the [WidgetDigSig] specification in order to verify the author

and/or distributor of the application.

WRT-03: The webinos WRT MUST support application network access control as defined in the Widget

Access Request Policy [WARP] for applications that want to communicate with remote resources.

WRT-04: The webinos WRT MUST implement the URI scheme as defined in [WidgetURI] to address

resources within W3C Widget and webinos application packages.

In addition to the XML elements defined in the Widget configuration document [Widgets] webinos

applications can make use of webinos-specific extensions. The following separate webinos-specific XML

namespace must be used to reference webinos-specific xml elements.

Webinos Extension XML namespace: http://www.webinos.org/webinosapplication

The following elements are webinos-specific extensions to the metadata part of the [Widgets]

specification and MUST be supported by webinos WRTs.

The distributor element

A distributor element represents people or an organization that distributed the instance of a webinos

application. Commonly application stores are distributors.

Context in which this element is used: As a child of the widget element.

Content model: Any.

Occurrences: Zero or one.

Attributes: href, email.

The email attribute represents an email address associated with the distributor. The email attribute is

optional.

The href attribute represents an URI that associates with the distributor. The href attribute is optional.

Example of Usage:

1 <widget xmlns="ht tp://www.w3.org/ns/widgets"

2 xmlns:webinos="http://www.webinos.org/webinosapplication">

3 <webinos:distributor email="info@examplarystore.com"

href="http://www.exemplarystore.com">

4 Examplary Store

5 </webinos:distributor>

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 80 of 276

6 <content src="widget.html"/>

7 </widget>

The versionName attribute of the widget element

A version name element represents the version of the application in a human-readable manner. The

versionName element is optional and is not used for application life cycle management, e.g., application

update.

Context in which this element is used: As a parameter of the widget element.

Content model: Any.

Occurrences: Zero or one.

Example of Usage:

1 <widget xmlns="http://www.w3.org/ns/widgets"

2 xmlns:webin os="http://www.webinos.org/webinosapplication"

3 webinos:versionName="Silver">

4 <content src="widget.html"/>

5 </widget>

The validfor attribute of the widget element

The validfor attributed defines a time period when the application is valid and can be used. The time

frame is specified in elapsed milliseconds after the first application execution. If the specified time is

elapsed the user should not be able to execute the application any more. This value gives only the

semantic information without any security or licensing mechanism behind. Additional security, digital

rights management (DRM) or licensing methods are implementation specific and left unspecified.

Context in which this element is used: As a parameter of the widget element.

Content model: Number.

Occurrences: Zero or one.

Example of Usage: Application valid for one week

1 <widget xmlns="http://www.w3.org/ns/widgets"

2 xmlns:webinos="http://www.webinos.org/webinosapplication"

3 webinos:validfor="604800000">

4 <content src="widget.html"/>

5 </widget>

The validuntil attribute of the widget element

The validuntil attributed defines a date and time until the application is valid and can be used. The time

frame is specified as in milliseconds whereas the date and time is encoded as milliseconds since

midnight of January 1, 1970, according to universal time. If the specified date and time is reached the

user should not be able to execute the application any more. This value gives only the semantic

information without any security or licensing mechanism. Additional security, digital rights management

or licensing methods are implementation specific and left unspecified.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 81 of 276

Context in which this element is used: As a parameter of the widget element.

Content model: Number.

Occurrences: Zero or one.

Example of Usage: Application valid until 12.31.2011 12am.

1 <widget xmlns="http://www.w3.org/ns/widgets"

2 xmlns:webinos="http://www.webinos.org/webinosapplication"

3 webinos:validuntil="1325332800000">

4 <content src="widg et.html"/>

5 </widget>

The copy-restricted element

Adding the copy-restricted element to the configuration document indicates that copy, export or

installation of the application on another device using webinos application sharing features is forbidden.

It is possible to allow copies on devices belonging to the same personal zone as the device where the

application was installed at first, using the restricted-to attribute with the value 'personal-zone'. If the

element is absent no restrictions are applied and exporting the application to the file system and

installing it on another device is possible if the WRT provides means for exporting applications. The

information provided by the copy-restricted element gives only the semantic information without any

security or licensing mechanism. Additional security, digital rights management or licensing methods are

implementation specific and left unspecified.

Context in which this element is used: As a child of the widget element.

Content model: None.

Occurrences: Zero or one.

Context in which the restricted-to attribute is used: As an attribute of the copy-restricted element.

Content model: DOMString.

Occurrences: Zero or one.

Example of Usage: Allowing copies on devices of the same zone

1 <widget xmlns="http://ww w.w3.org/ns/widgets"

2 xmlns:webinos="http://www.webinos.org/webinosapplication">

3 <content src="widget.html"/>

4 <webinos:copy - restricted webinos:restricted - to="personal - zone"/>

5 </widget>

Application Interface

In [WidgetAPI] the W3C defines an API to access application specific data defined in the configuration

document as well as a persistence model. This API is used and extended to provide support for the

webinos-specific XML elements defined in this specification.

 1 interface Wid get {

 2

 3 //webinos - specific attributes

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 82 of 276

 4 readonly attribute DOMString distributor;

 5 readonly attribute DOMString distributorEmail;

 6 readonly attribute DOMString distributorHref;

 7

 8 readonly attribute DOMString versionName;

 9 readonly attribute unsigned long long validfor;

10 readonly attribute unsigned long long validuntil;

11

12 //Widget standard attributes

13 readonly attribute DOMString author;

14 readonly attribute DOMString authorEmail;

15 readonly attribute DOMString authorHref;

16 readonly attribute DOMString description;

17 readonly attribute DOMString id;

18 readonly attribute DOMString name;

19 readonly attribute DOMString shortNam e;

20 readonly attribute Storage preferences;

21 readonly attribute DOMString version;

22 readonly attribute unsigned long height;

23 readonly attribute unsigned long width;

24 };

As shown in the Widget object interface description several webinos-specific attributes are added. The

meaning of each new attribute is described in the following list.

 distributor attribute: The distributor attribute provides read only access to the distributor

element's content of the config.xml if available. Otherwise this attribute is NULL.

 distributorEmail attribute: The distributorEmail attribute provides read only access to the

distributor's email adress if available. Otherwise this attribute is NULL.

 distributorHref attribute: The distributorHref attribute provides read only access to the

distributor's URI reference if available. Otherwise this attribtue is NULL.

 versionName attribute: A human readable version name. If not set in the configuration

document it contains the same value as the version attribute.

 validfor attribute: A numeric value represented in milliseconds that indicates how long the

application can be used before usage should be prohibited.

 validuntil attribute: A numeric value represented in milliseconds since midnight of January 1,

1970, according to universal time that indicates until when the application can be used before

usage should be prohibited.

The following specification for distributed webinos applications will add more extensions to the Widget

application interface as well as to the Widget packaging and configuration specification which are

described more comprehensively and have their own sections in the document.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 83 of 276

Distributed Webinos Applications

Webinos allows the creation of multi-device or distributed applications not only from the execution

environment point of view but also from the deployment and packaging point of view. Webinos allows

developers to design their applications in a way that applications (or only parts of them) can be

automatically or programmatically deployed on to other devices, e.g., because they are more suitable

for the execution of the application code because of the application design, the feature access or

because of performance reasons.

The webinos distributed application functionality allows the packaging of any number of sub-

applications, referred to as child applications, within a main webinos application package, referred to as

the parent application. Child applications are also full webinos applications and follow the webinos

application packaging specification.

Application code encapsulated in child applications can be code where the developer decides that it

makes sense to create specific application modules for performing certain tasks, the functionalities

provided by the modules can be used by the parent application and also can be shared between other

applications. Thus, application distribution is not only about outsourcing code to other devices but also

about using functionalities provided by one application across others and de-coupling application logic.

Use Case Examples

1 Smart Text Input:

Using a smartphone as text input device for applications running on a TV set. Here, the smartphone not

only sends key-ŎƻŘŜǎ ǘƻ ǘƘŜ άƳŀƛƴέ ŀǇǇƭƛŎŀǘƛƻƴΣ ƛǘ ŀƭǎƻ ǎƘƻǿǎ ǎƻƳŜ ŀǇǇǊƻǇǊƛŀǘŜ ƎǊŀǇƘƛŎǎ ƛƴ order to

support the text input. In addition, the outsourced code running on the smartphone may check the text

ƛƴǇǳǘ ƛƴ ƻǊŘŜǊ ǘƻ ǇǊŜǾŜƴǘ ǎŜƴŘƛƴƎ ƻŦ ǳƴƴŜŎŜǎǎŀǊȅ ƻǊ ƛƴŎƻǊǊŜŎǘ Řŀǘŀ ǘƻ ǘƘŜ άƳŀƛƴέ ŀǇǇƭƛŎŀǘƛƻƴΦ

2 Smart sensors:

Assume that an application wants to be informed when remotely available sensor data (real sensor or

any another webinos enable/compatible device) crosses a specific measurement threshold. The

application could check the sensor reading periodically and take some action based on this. Since this

would produce unnecessary traffic and needs the primary application to run continuously, it would be

better to only get a sensor event if the threshold is reached. To achieve this, the application may

outsource a piece of code to the desired sensor or device. The code locally checks the sensor/requested

Řŀǘŀ ǳƴǘƛƭ ǘƘŜ ǘƘǊŜǎƘƻƭŘ ƛǎ ǊŜŀŎƘŜŘΦ ¢ƘŜ ƻǳǘǎƻǳǊŎŜŘ ŎƻŘŜ ƛƴŦƻǊƳǎ ǘƘŜ άƳŀƛƴέ ŀǇǇƭƛŎŀǘƛƻƴ Ǿƛŀ ŀƴ ŜǾŜƴǘ

system about this so that the application can perform a specific action.

3 Component sharing:

The Android Intent programming paradigm (see http://developer.android.com/reference/

android/content/Intent.html) allows easy sharing of application components between other

applications. For example a tiny application is only designed for picking a location from a map and

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 84 of 276

providing the attached geographic location for the selected map position. Since this task is common

across multiple applications it would be an ideal candidate for cross application sharing of services.

Thus, the application is able to be invoked from other applications and could send back the result to the

calling application. Other possibilities like these borrowed from Android Intents could be provided to

webinos applications by using the application distribution mechanism not only for distributing

applications but also for sharing application features.

Packaging of Distributable Applications

Applications that want to make use of webinos distributed application features have to declare the child

applications which should be made available. Three child application deployment options can be

considered:

 An application can outsource functionality to the child application for any application specific

reason, on the same device or other device, to be accessible using the webinos discovery service

(if shared functions are declared).

 An application can share functions with other applications to allow reuse of existing code

between multiple applications without allowing access to the whole application but to a

dedicated component.

 An application can package multiple child applications in one application package in order to

ship and install multiple applications at once.

To declare code as being a child application, two steps are needed:

1. Package the components to make them distributable.

2. Declare those components as being distributable.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 85 of 276

Packaging a child application as a distributable application works exactly the same way as packaging a

full webinos application. Thus, a child application could be as content-rich as a full webinos application

but with a dedicated small single purpose. Applications which do not declare any child application do

not need any distributed application related processing by the WRT. They will be installed as described

in [Widgets].

Note: In the current release webinos, supports only pre - defined child applications

which are available in the parentôs application package during application

installation. Future versions may support dynamic creation of application packages

during application runtime by providing appropriate APIs. Both the parent and child

applications must be signed by the same authority.

Packaged child applications must be placed in the webinos-ǎǇŜŎƛŦƛŎ ΨŎƻƳǇƻƴŜƴǘǎΩ ŦƻƭŘŜǊ ǿƘƛŎƘ Ƴǳǎǘ be

ƭƻŎŀǘŜŘ ƛƴ ǘƘŜ Ǌƻƻǘ ŦƻƭŘŜǊ ƻŦ ǘƘŜ ǇŀǊŜƴǘΩǎ ŀǇǇƭƛŎŀǘƛƻƴ ǇŀŎƪŀƎŜΦ

Exemplary application structure:

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 86 of 276

 root

o config.xml

o app.html

o icon.png

o Scripts

Á app.js

o Styles

Á small.css

Á big.css

o Components

Á child1.wgt

Á child2.wgt

Á child3.wgt

Application Installation on mult iple devices

Automatic Deployment

During installation of a parent application its child applications, if any, can be automatically installed on

the same device as the parent application. The WRT may provide the possibility to also install child

applications on other devices if not prohibited by the child application definition in the configuration file

(config.xml).

The child application that should be installed on other devices must provide a child element in the

ŀǇǇƭƛŎŀǘƛƻƴΩǎ ŎƻƴŦƛƎǳǊŀǘƛƻƴ ŘƻŎǳƳŜƴǘΦ ¢Ƙƛǎ will trigger the webinos runtime to install the related child

application. If the element is absent, the related child application will not be automatically deployed.

Example of Usage:

1 <widget xmlns="http://www.w3.org/ns/widgets"

2 xmlns:webinos="ht tp://www.webinos.org/webinosapplication"

3 id=òhttp://exampleapp.org/app1ò webinos:type="container">

4 <webinos:child webinos:install="any">child1.wgt</webinos:child>

5 <webinos:child webinos:install=òlocalò>child2.wgt</webinos:child>

6 <webinos:child>child3.wgt</webinos:child>

7 </widget>

 Line 3: The application package is defined as type 'container'. This means that no parent

application exists in the application package but, if defined in the manifest, child applications

can be installed when the WRT processes the application package, it is a convenience mode for

installing multiple applications using only one package. After the WRT finished processing the

package it can be removed from the device because there is no application that can be

executed. If no parent and no child applications are defined nothing has to be installed and the

application package can be removed. The type attribute is optional. If the type is set to

'container' the content element is not evaluated and can be absent. The other way round, if the

container attribute is absent, the content element must be declared in the manifest.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 87 of 276

 Line 4-5: The install attribute specifies whether a child application should be installed directly

after installing the main application package (set to 'any' or 'local') or not (any other value or

absent). If not set to one of the allowed values, child applications can be installed later using the

webinos Widget API. Before starting installation of a webinos application the WRT has to check

if any declared child applications are available. If not the installation process must be cancelled

and the user must be informed about an invalid application package. If install is set to 'any' the

WRT must show a native WRT dialog to the user containing a set of available devices where the

child application can be installed on to the user. Available devices could be every device of the

ǳǎŜǊΩǎ ǇŜǊǎƻƴŀƭ ȊƻƴŜ ƻǊ ƻǘƘŜǊ ŘŜǾƛŎŜǎ ŀŎŎŜǎǎƛōƭŜ ǘƻ ǘƘŜ ǳǎŜǊΦ ¢ƘŜ ²w¢ Ƴǳǎǘ ǎƘƻǿ ƛƴŦƻǊƳŀǘƛƻƴ

about the child application available in the configuration document (e.g., author, title, version,

description,...) to the user based on the application package source and destination device, to

allow the user to double check what will be installed. If 'any' is specified, the user may select

one, more or all available devices for installing the child application. Afterwards the WRT has to

install the application on the selected device as specified in section Inter-Runtime Application

Deployment. If set to 'local' the related child application must be installed on the same device as

the main application was previously installed. The user does not have to select a target device,

but should be informed that this will install only locally.

 Line 6: Each child application contained in the application package must be advertised using the

child element. Child applications contained in the package but not advertised in the

configuration document are rejected by the WRT and, thus, cannot be automatically installed

during application installation phase or using the webinos Widget API. Before starting

installation of a webinos application the WRT has to check if any child application declared in

the configuration document is also physically available in the package. If not the installation

process must be cancelled and the user must be informed about an invalid application package.

Note: In future versions more advanced automatic deployment mechanisms may be

introduced which allowing stating a number of filters within the remote - install

element of the configuration document in order to define appropriate devices for

application deployment.

On Request Deployment

Webinos allows remote installation during installation of the parent application and it is also possible to

deploy code on demand at the application runtime. Webinos provides an application deployment API

using the Widget interface which takes the application ID of the child that should be installed. The

application ID must be specified in the configuration document of the child as specified in [Widgets].

Following the WebIDL specification for deploying child applications:

 1

 2 [Callback=FunctionOnly, NoInterfaceObject] interface DeploymentSuccessCallback {

 3 //called if a child application was successfully installed

 4 //childI D is the application id which was used during deployChild

 5 //serviceID is the unique application id that can be used to explicitly address

the deployed service within webinos service discovery

 6 void onSuccess(in DOMString childID, in DOMString serviceID);

 7 };

 8 [Callback=FunctionOnly, NoInterfaceObject] interface DeploymentErrorCallback {

 9 void onError (in DeploymentError error);

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 88 of 276

10 };

11

12 interface DeploymentError {

13 const unsigned short INSTALLATION_CANCELED_BY_USER = 1 01;

14 const unsigned short PERMISSION_DENIED_ERROR = 102;

15 const unsigned short NOT_REACHABLE = 103;

16 const unsigned short UNKNOWN_APPLICATION_ID = 104;

17 const unsigned short ALREADY_INSTALLED = 105;

18 const unsigne d short INSTALLATION_ERROR_OTHER = 106;

19 readonly attribute unsigned short code;

20 readonly attribute DOMString applicationID;

21 };

22

23 interface Widget {

24 //Deploys a child application known to the WRT through the definition in

the application s manifest

25 //file on another device. If local = false or not specified the WRT has to

provide a list of available

26 //devices to the user where the application should be installed on, if

local = true the WRT has to

27 //install the selected child on the same device as the API is bound to.

28 void deployChild(in DeploymentSuccessCallback onSuccess, in

DeploymentErrorCallback onError, in DOMString childApplicationID, in optional boolean

local);

29 }

To install a child on a selected remote device the webinos device discovery API can be used to find

available Widget API services on other devices where deployChild can be used remotely.

Exposing Application Functionalities as Service to other Applications

As introduced in the beginning of this section, webinos applications may share functionalities across

other applications. To make functions available to others the shared element containing a number of

shared-function and shared-api elements must be added to the application's configuration document.

The content of the shared-function element must be a JavaScript function defined in the JavaScript part

of the application which will be accessible to other applications using webinos discovery services and

searching for services with the type defined in the id attribute of the widget element. To group functions

and allow exposing of multiple APIs at the same time the shared-api element can be used. The shared-

api element must have an api-name attribute which uniquely identifies the exposed API. The service can

then be instantiated by using the webinos discovery service while using the api-name as input

parameter for the service type of the service that should be discovered.

Example of Usage:

 1 <widget xmlns="http ://www.w3.org/ns/widgets"

 2 xmlns:webinos="http://www.webinos.org/webinosapplication"

 3 id="http://exampleapp.org/app1">

 4 <webinos:shared>

 5 <webinos:shared - api api - name="http://www.w3.org/ns/api - perms/geolocation">

 6 < webinos:shared - function>watchPosition</webinos:shared - function>

 7 <webinos:shared - function>getCurrentPosition</webinos:shared - function>

 8 <webinos:shared - function>clearWatch</webinos:shared - function>

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 89 of 276

 9 </webinos:shared - api>

10 <webinos:shared - function>exampleFuntion</webinos:shared - function>

11 </webinos:shared>

12 <content src="widget.html"/>

13 </widget>

The visibility of the shared functions can be restricted to be only accessible by a parent application, a

child application or an application running in the same personal zone. To define this, the visibility

attribute of the shared-function element can be used. For example:

<webinos:shared -function visibility=òparentò>function1</webinos:shared- function>

allows only a parent application to access function1.

<webinos:shared -function visibility=òchildò>function2</webinos:shared- function> allows

only a child application to access function2.

<webinos:shared -function visibility=òpersonal-zoneò>function3</webinos:shared -

function> allows only applications running in the same personal zone as the service

application to access function3.

To define whether the service is permanently available (always running) or only after the application

was started by the user or using the Applauncher API the available attribute of the shared element can

be used. If it is set to 'permanent' the application is always running, thus, the exposed functions can be

found by using the discovery API at any time the hosting device is connected. All other values or the

absent of the attribute results in unavailability of the service unless the application that exposes the

service functions is started.

1 <widget xmlns="http://www.w3.org/ns/widgets"

2 xmlns:webinos="http://www.webinos.org/we binosapplication"

3 id="http://exampleapp.org/app1">

4 <webinos:shared available="permanent">

5 ...

6 </webinos:shared>

7 <content src="widget.html"/>

8 </widget>

To use functions exposed by webinos applications a reference to the application is needed. To get a

reference to an object that provides access to the exposed functions the webinos JavaScript discovery

API can be used while providing the query with the unique identifier of the API or application. The object

returned by the webinos runtime is enriched with the Widget interface containing the application name,

description, author, and version name beside of the features provided by the queried interface. For

example accessing function 1 from the above example would in JavaScript look like:

 1 function showMap(location){

 2 //doing some logic

 3 }

 4

 5 function successCB(myLocationService) {

 6 alert('Service ' + myLocationService.displayName + ' ready to use');

 7

 8 //invok ing a function exposed by the application

 9 myLocationService.webinos.extensions.getCurrentPosition(showMap);

10 }

11

12 function successCB2(myservice) {

13 alert('Service ' + object.displayName + ' ready to use');

14

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 90 of 276

15 //invoking a function exposed by the application

16 myservice.webinos.extensions.exampleFuntion();

17 }

18

19 window.webinos.findServices({api:'http://www.w3.org/ns/api - perms/geolocation'},

{onFound:successCB});

20 window.webinos.findSer vices({api:'http://exampleapp.org/app1'},

{onFound:successCB2});

The actual functionality, the signature of the functions as well as the function names of the exposed

functions must be known to the developer. A semantic description of the functions behaviour is out of

scope of the specification. As you can see in the above example the default name space where an API is

attached to in the returned object is webinos.extensions. Each exposed function is available using this

prefix. If it is needed to make the exposed functions available under a specific path then this can be

optionally defined using the api-path attribute of the shared-api element (e.g., if the application exposes

a well known API, such as geolocation, that has a defined way of accessing it).

Example of Usage: Defining an API path for an exposed API

 1 <widget xmlns="http://www.w3.org/ns/widgets"

 2 xmlns:webinos="http://www.webinos.org/webinosapplication"

 3 id="http://exampleapp.org/app1">

 4 <webinos:shared>

 5 <webinos:shared - api api - name="http://www.w3.org/ns/api -

perms/geolocation" api - path="window.navigator.geolocation">

 6 <webinos:shared - function>watchPosition</webinos:shared - function>

 7 <webinos:shared - function>getCurrentPosition</webinos:shared - function>

 8 <webinos:shared - function>clearWatch</webinos:shared - function>

 9 </webinos:shared - api>

10 </webinos:shared>

11 <content src="widget.html"/>

12 </widget>

Using the above example makes the API available under myLocationService.navigator.

geolocation.getCurrentPosition() instead of myLocationService.webinos.extensions. getCurrentPosition

(showMap) when the api-path is not declared.

Interfacing between Child and Parent Applications

Since webinos supports a distributed application design the possibility of communication between

application parts must be assured by the system. Webinos supports this by providing information about

deployed child applications. As introduced in the previous section webinos provides a unique service ID

for deployed child applications. This service ID can either be used for instantiating a remote binding to

the child application in order to use exposed functions (if any) or it can be used to uniquely address an

application within the webinos event API. Thus, a parent application can communicate with its child

applications.

For the other way around, to let the child application know the unique identity of its parent application,

the child application can be explicitly informed about the parent's identifier. Thus, after the parent

receives a success callback it should instantiate the client and call a function which takes the parent's

identifier using the getServiceId function from the ServiceDiscovery API. An exemplary flow could be:

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 91 of 276

 1

 2 function bindcallback(Service service){

 3

service.setParent(window.webinos.discovery.getServiceId("http://www.webinos.org/webino

sapplication"));

 4 };

 5

 6 function onError(in DeploymentError error){

 7 alert(error.code);

 8 };

 9

10 function onSuccess(in DOMString childID, in DOMString serviceID){

11 var service = window.webinos.discovery.createService();

12 service.bind({onBind:bindcallback},childID);

13 };

14

15 window.widget.deploy Child(onSuccess, onError, "http://www.exampleapp.org/app1");

Hosted Webinos Applications

Apart from supporting installable applications, webinos supports the execution of hosted Web

applications which does not require a permanent installation. Hosted applications can also make use of

webinos-specific functionalities if the needed features are declared in the related application manifest.

To attach metadata and configuration data to hosted applications, the W3C packaging and configuration

is extended. The src attribute of the content element in the application configuration document of a

widget file (.wgt) is allowed to point to an absolute path outside of the application package. In this case

there is no need to include any other content in the package but it is still allowed. Thus, mixing local

installed content and remote content is possible.

1 <widget xmlns="http://www.w3.org/ns/widgets">

2 <content src="http://www.hostedapps.com/hostedApp1.html"/>

3 </widget>

Making the hosted application available to the user works the same as installing a packaged webinos

Web application. A .wgt package file is provided to the WRT and processed. If the WRT detects that an

application is a hosted application the WRT has to add links to the application in order to make them

accessible to the user. This, for example, can be done by placing the referenced application icon in an

application gallery or by maintaining a bookmark list. The WRT has to inform the user about

unavailability of a hosted application if there is no internet connection available.

In addition to the absolute path of the start document of a hosted application the scope of the

application must be defined using the access element in order to allow access to needed documents and

to apply related policies.

The access element is defined in the Widget Access Request Policy [WARP] which is applied for hosted

applications.

Example of Usage: Application is defined using a root path

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 92 of 276

1 <widget xmlns="http://www.w3.org/ns/widgets">

2 <content src="http://www.hos tedapps.com/hostedApp1/run.html"/>

3 <access origin="http://www.hostedapps.com/hostedApp1/"/>

4 </widget>

Example of Usage: Application is defined using absolute paths to the applications documents

1 <widget xmlns="http://www.w3.org/ns/widgets">

2 <co ntent src="http://www.hostedapps.com/hostedApp2/run.html"/>

3 <access origin="http://www.hostedapps.com/hostedApp2/run.html"/>

4 <access origin="http://www.hostedapps.com/hostedApp2/style.css"/>

5 <access origin="http://www.hostedapps.com/hostedApp2/ main.js"/>

6 </widget>

Formal Specification Webinos Web Runtime Environment

This section specifies a number of functional and non functional requirements related to the WRT itself.

This includes how webinos applications are shared between devices, how the application life cycle is

handled, how webinos applications can be installed on WRTs, and which Web technologies must be

supported by webinos WRTs in order to define a common set of available functionality.

Inter -Runtime Application Deployment

Webinos provides the ability to exchange webinos applications between devices including export of

applications to the file system to be manually installed on another device and automatic installation

using provided WRT functionalities. This includes whole application packages as well as child application

packages which are included in a main application package. If a WRT is asked by the user to install a

select application on another device the WRT has to provided a meaningful UI for selecting a target

device which includes, e.g, discovery of nearby devices or of devices in the same personal zone.

For installing application on other devices within webinos the following events are defined and must be

supported by the WRT. The same mechanism is applied if an application for remote deployment is

selected using the JavaScript Widget API for code deployment or the automatic deployment during

application installation time is applied.

Requesting a Remote Installation on another device:

Event type must be: http://webinos.org/events/application/request-installation

Event payload must be a JSON object with following attributes:

 1 {

 2 name: [the name of the application that should be remotely install ed]

 3 description: [the description of the application that should be remotely

installed]

 4 version: [the version of the application that should be remotely installed]

 5 author: [the author of the application that should be remotely installe d]

 6 id: [the application ID of the application that should be remotely installed]

 7 size: [the size of the application package in number of bytes]

 8 uri: [optional, an URI where the WRT that is requested to install an

application can retrie ve the application code]

http://webinos.org/events/application/request-installation

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 93 of 276

 9 payloadInstallation: [optional, TRUE or FALSE while true means that an

application transmission using the webinos event mechanism is requested, e.g, if an

uri cannot be provided]

10 }

Answer to a remote installation request:

Event type must be: http://webinos.org/events/application/request-installation-response

Event payload must be a JSON object with following attributes:

1 {

2 payloadI nstallation: [optional, TRUE if an application transmission using the

webinos event mechanism is accepted]

3 code: [optional if payloadInstallation is used, error code as specified in the

webinos widget specification extension or 1 for a successful ins tallation]

4 id: [the application ID of the application that should be remotely installed]

5 uniqueID: [optional if payloadInstallation is used, a unique id of the

application that represents exactly this application installation which can be used

for service discovery or remote application launch]

6 }

Sending application using payload:

Event type must be: http://webinos.org/events/application/payload-installation?id=[application id,

must be the same as previously requested in request-installation otherwise the event must be dropped]

Event payload: [the binary data of the application]

After installation another request-installation-response must be sent to the initiating device.

Application Life Cycle

Webinos applications can be made available through a number of different deployment methods

including installation via Web sites, application stores, file system, other webinos Web runtimes, simple

application sharing and application advertisement, and execution of hosted applications (no

installation). Upon installation of a webinos application package, the Web runtime must process the

package as specified in the webinos application packaging specification. Additionally a webinos Web

runtime must implement the following requirements.

WRT- 05: The WRT MUST sent a User Agent Identification containing vendor, name, version

of WRT with each HTTP/HTTPS request to be used for identifying available features

provided by the WRT.

WRT- 06: If possible the webinos WRT MUST catch content which is of MIME type

application/widget in order to install the application or execute the application if

already installed and up to date.

WRT- 07: If possible the webinos WRT MUST catch th e invocation of files with a .wgt

extension in order to install the application or execute the application if already

installed and up to date.

WRT- 08: The WRT MAY check the applications configuration document for compatibility

with the features provided by the runtime.

http://webinos.org/events/application/request-installation-response
http://webinos.org/events/application/payload-installation?id=%5bapplication

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 94 of 276

WRT- 09: The WRT MUST provide means to install locally available applications on

another device which can be selected by the user in conformance with section 2 of this

specification.

WRT- 10: The WRT MUST provide a list of application avail able to the user for local

installation or remote usage.

WRT- 11: The WRT MUST delete all data specific to an application if the application is

uninstalled. This includes the un - installation of any child applications if they are

depended on the parent appl ication.

WRT- 12: The WRT MUST use secure storage for webinos applications that are marked as

copy protected. This should not allow to view, export, modify, or any other access of

the application by other applications or the user (WAC).

WRT- 13: The WRT MUST use encrypted storage for webinos applications in case that

external or general accessible storage space is used (WAC) for storing application

data.

Notify Widgets to Web Browsers

It is possible to notify the availability of widgets to Web browsers using the HTML <link> element in

common Web sites. Thus, common Web Browsers may show the availability of installable applications

to the user including the possibility of installing them into the system. In advance, the browser should

check if a Widget handler, e.g., a webinos WRT, is registered in the system. The <link> element's type

attribute must be set to "application/widget" to define the MIME type of the linked resource. The title

attribute should be set to the widgets title. The href attribute must contain the link to the application

package. The link type defined by the rel attribute must be set to "alternate".

1 <link rel="alternate"

2 type="application/widget"

3 title="Application Title"

4 href="http://www.applicationhost.com/application.wg t">

5 </link>

Life Cycle API

Webinos provides some APIs to allow developers to manage their application's life cycle during

application execution. While the application itself cannot influence its execution life cycle status

Webinos allows for registering callbacks in case the application will be destroyed and can't be resumed,

will go to background/foreground or will be stopped/started again or resumed.

 1 interface NotifySuccessCallback{

 2

 3 //Called if an event was accepted by the user. If provid ed, the notification id

is passed in to link the success to a specific event

 4 onSuccess(in DOMString id);

 5 }

 6

 7 interface Widget {

 8

 9 //allows an application to trigger calling destroy from the runtime

10 void exit();

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 95 of 276

11

12 //s ends the application to background if possible so that it is not visible to

the user anymore

13 //if possible by the platform the application execution goes on

14 void hide();

15

16 //asks the WRT wheather the application is currently hidden (not visible to the

user) or not

17 //if the application is hidden it may notify an event to the user using notify

18 boolean isHidden();

19

20 //Triggers the WRT to notify occurrence of an event, as described using the

parameters, to the user

21 //The user can click the event. If the application is in background and the

user accepted the event

22 //, e.g., by clicking on it, the application must be brought back to

foreground. The notify success

23 //callback is then called after onF oreground was called.

24 void notify(in NotifySuccessCallback onSuccess, in NotifyErrorCallback onError,

in DOMString title, in optional DOMString shortDescription, in optional DOMString id,

in optional DOMString icon);

25

26 //To cancel a previou s notify because it is updated or expired (if ongoing /

not clicked by the user)

27 void cancelNotify(in DOMString id);

28

29 //Callback function which is called if the application will be shut down by the

WRT. All application memory

30 //assi gned to the application will be freed after returning out of this

function.

31 void onDestroy();

32

33 //Callback function which is called after the application was put to

background, e.g., another application

34 //goes to foreground and the a pplication is not visible any more. After calling

onBackground the application

35 //is still running but not visible anymore.

36 void onBackground();

37

38 //Callback function which is called if the application goes to foreground after

previou sly going to background.

39 void onForeground();

40

41 //Callback function which is called if application execution is stopped by the

WRT.

42 void onStop();

43

44 //Callback function which is called if application execution is continued a fter

previously interrupted.

45 void onStart();

46

47 };

Application Update

[WidgetUpdate] defines how packaged Web applications (Widgets) can be updated over http. For

hosted Web applications without any content in the application package there is no need for local

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 96 of 276

update checks. All updates are applied directly remotely on the hosting Web server and locally applied

at the next execution of the application.

The webinos WRT MUST be capable of updating webinos application packages as defined in

W3C Widget Updates over HTTP [WidgetUpdate].

Child applications may also be updated using [WidgetUpdate]. Another option for can be re-installing

ǘƘŜ ŎƘƛƭŘ ŀǇǇƭƛŎŀǘƛƻƴ ǿƘƛŎƘ ƛǎ ƛƴƛǘƛŀǘŜŘ ōȅ ƛǘΩǎ ǇŀǊŜƴǘ ŀǇǇƭƛŎŀǘƛƻƴ ǿƘƛŎƘ ǿŀǎ ǇǊŜǾƛƻǳǎƭȅ ǳǇŘŀǘŜŘ ǳǎƛƴƎ

[WidgetUpdate]. Here, the new version of the application that should be re-installed must be different

from the version currently installed. Otherwise its rejected.

Application de-installation

The WRT must provide functionalities to permanently remove applications from the device on demand

of the user. It may appear the child-applications on other devices become non-functional without their

parent application. The developer can declare this within the configuration document in the child

element. If the optional attribute parentneeded is set to true the WRT has to store the application

instance IDs provided by the remote installation process. These IDs must be used to request de-

installation on remote devices in case the parent application is deleted.

Example of Usage:

1 <widget xmlns="http://www.w3.org/ns/widgets"

2 xmlns:webinos="http://www.webinos.org/webinosapplication"

3 id=òhttp://exampleapp.org/app1ò webinos:type="container">

4 <webinos:child webinos:parentneeded=òtrueò>child2.wgt</webinos:child>

5 </ widget>

Events for remote de-installation

Event type must be: http://webinos.org/events/application/request-deinstallation

Event payload must be a JSON object with following attributes:

1 {

2 id: [the application ID of the application that should be deleted]

3 uniqueID: [the unique instance id of the application that represents exactly

this application installation]

4 }

Event type must be: http://webinos.org/events/application/request - deinstallation -

response

Event payload must be a JSON object with following attributes:

1 {

2 code: [error code as specified in the DeploymentError of th e webinos widget

specification or 1 in case of successfull de - installation]

3 id: [the application ID of the application that should be deleted]

4 uniqueID: [the unique instance id of the application that represents exactly

this application install ation]

5 }

In case a remote de-installation was not successful the WRT has to inform the user about this and about

that a manual de-installation may be needed.

Automatic execution of Applications

http://webinos.org/events/application/request-deinstallation
http://webinos.org/events/application/request-deinstallation-response
http://webinos.org/events/application/request-deinstallation-response

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 97 of 276

Beside user driven application execution, webinos applications can be automatically initiated by events

coming from webinos itself or from other applications. Webinos WRT allows registering for event types

which triggers the execution of the application. Events for automatic execution can be application

specific ones or predefine webinos events. Subscription to application execution events can be made

programmatically using the webinos Event API and described using a new webinos element as child of

the <content> element in the applications configuration document.

Example of Usage: Descriptive registration for application execution events

1 <widget xmlns="http://www.w3.org/ns/widgets"

xmlns:webinos="http://www.webinos.org/webinosapplication" webinos:type="background">

2 <content src="http://www.hostedapps.com/hoste dApp2/run.js"/ >

3 <webinos:start>http://webinos.org/events/core/BOOT_UP_COMPLETED</webinos:start>

4

<webinos:start>http://www.hostedapps.com/hostedApp2/eventtypes/event1</webinos:start>

5 </content>

6 </widget>

Predefined Events that must be supported by the WRT:

http://webinos.org/events/core/BOOT_UP_COMPLETED

If the device and the WRT is ready to execute applications the WRT must auto start applications

registered to this event.

Applications without UI

Webinos application can be executed in a no user interaction (UI) mode which means that the

application is invisible to the user and the user cannot directly interact with the application. After

starting a background application it will be executed and is responsive to potential incoming request as

long as the application is running (not stopped by the user or by the service itself). To express that an

application is a no UI application type type attribute is added to the <widget> element of the

application's configuration document. If type is 'background' the application is marked as no UI /

background application. In any other cases the application is handled as normal application. The WRT

must provide means to manage background applications by the user. E.g., start a background

application, show running background applications and terminate background applications.

Example of Usage: Declaring an application as background application

1 <widget xmlns="http://www.w3.org/ns/widgets"

xml ns:webinos="http://www.webinos.org/webinosapplication" webinos:type="background">

2 <content src="http://www.hostedapps.com/hostedApp2/run.js"/>

3 </widget>

Extensions

The webinos runtime must support the NPAPI standard. The specification to build NPAPI plugins and a

NPAPI compliant runtime is out of scope of this document. The NPAPI plug-ins and a NPAPI compliant

runtime are specified in [NPAPI-Browser-Side-API], [NPAPI-Plugin-Side-API], and [Npruntime].

http://webinos.org/events/core/BOOT_UP_COMPLETED

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 98 of 276

This specification covers how to declare a NPAPI plug-in as an extension in the application manifest, how

the installation should be handled by the webinos runtime and how functions of an extension can be

made available to other applications. Security aspects of extensions are covered in WP 3.5

Bundeling extensions to an application package allows us to manage them in the same way as regular

applications (cf. LC-ASP-ISMB-112). Furhtermore it allows us to expose functions of the extension using

the same mechansims as for exposing and sharing functions of applications and features (cf. LC-DWP-

ISMB-009).

Integrating a NPAPI plug -in into an application package
Webinos allows you to integrate a NPAPI plug-in into your application package. The extension is then

distributed with the application itself. The installation of the plug-in is handled by the webinos platform.

In order to enable the runtime to handle the installation of the plug-in, some metadata has to be

specified inside the application manifest including the name, location of the binary files, and supported

platforms. This meta data is needed for the lifecylemanagement of the plug-in.

The following example illustrates how an application description making use of this feature looks like.

 1 <webinos:plugins>

 2 <webinos:plugin>

 3 <webinos:name>foo</webinos:name>

 4 <webinos:platforms>

 5 <webinos:platform>

 6 <webinos:name>win32</webinos:name>

 7 <webinos:path>plugi ns/win32/foo.dll</webinos:name>

 8 </webinos:platform>

 9 <webinos:platform>

10 <webinos:name>linux</webinos:name>

11 <webinos:path>plugins/linux/foo.o</webinos:name>

12 </webinos:platform >

13 </platforms>

14 </webinos:plugin>

15 </webinos:plugins>

The plugins element

The plugins element lists all plug-ins, which are part of the application package. An application package

can contain more than one plug-in.

Context in which this element is used: As a child of the widget element.

http://dev.webinos.org/redmine/projects/t3-5/wiki/Deliverable_Specifications_Extension_Handling
http://dev.webinos.org/redmine/projects/wp2-2/wiki/DeliverableVersionAll#LC-ASP-ISMB-112
http://dev.webinos.org/redmine/projects/wp2-2/wiki/DeliverableVersionAll#LC-DWP-ISMB-009
http://dev.webinos.org/redmine/projects/wp2-2/wiki/DeliverableVersionAll#LC-DWP-ISMB-009

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 99 of 276

Content model: complex type of tPlugins

Sequence: zero or one

The complex type of tPlugins is defined as followed

1 <complexType name="tPlugins">

2 <sequence>

3 <element name="plugin" type=" webinos:tPlugin"></element>

4 </sequence>

5 </complexType>

The plugin element

The plugin element defines the information about a single plug-in.

Context in which this element is used: As a child of the plugins element.

Content model: complex type tPlugin

Seqeunce: one ore many

Attributes: none

The complex type for a tPlugin is defined as followed:

1 <complexType name="tPlugin">

2 <sequence minOccurs="1" maxOccurs="1">

3 <element name="name" type="string"></element>

4 <sequence min Occurs="1" maxOccurs="unbounded">

5 <element name="platforms" type="webinos:tPlatform"></element>

6 </sequence>

7 </sequence>

8 </complexType>

name element of plugin:

Defines the name of the plugin.

Context in which this element is used: As a child of a plugin element.

Content model: string

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 100 of 276

Occurrences: one

Attributes: none

platforms element of plugin

The platforms element is the container for the defintion of the supported platforms by the plug-in

Context in which this element is used: As a child of a plugin element.

Content model: complex type tPlatforms

Occurence: one

Attributes: none

The complex type tPlatforms is defined as followed:

1 <complexType name="tPlatforms">

2 <sequence>

3 <element name="platform " type="webinos:tPlatform"></element>

4 </sequence>

5 </complexType>

platform element of platforms

Defines a supported platform for plugin inlcuding the platform specific binary.

Context in which this element is used: As a child of the platforms element.

Content model: complex type tPlatforms

Occurence: one or many

Attributes: none

The complex type tPlatform is defined as followed:

1 <complexType name="tPlatform">

2 <sequence minOccurs="1" maxOccurs="1">

3 <element name="name" type= "string" minOccurs="1" maxOccurs="1"></element>

4 <element name="path" type="string" minOccurs="1" maxOccurs="1"></element>

5 </sequence>

6 </complexType>

name of platform

Defines the platform name of the binary

Context in which this element is used: As a child of a platform element.

Content model: String

Sequence: one

path of platform

Defines the path to binary for the specific platform relative to the location of the application manifest.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 101 of 276

Context in which this element is used: As a child of a platform element.

Content model: String

Sequence: one

XML-Schema for plug-in packaging

The following code shows extension specific application meta data in form of a XML schema.

 1 <?xml version="1.0" encoding="UTF - 8"?>

 2 <schema targetNamespace="http:// www.webinos.org/webinosapplication"

elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:webinos="http://www.webinos.org/webinosapplication">

 3 <complexType name="tPlugins">

 4 <sequence>

 5 <element name=" plugin" type="webinos:tPlugin"></element>

 6 </sequence>

 7 </complexType>

 8 <element name="plugins" type="webinos:tPlugins"></element>

 9 <complexType name="tPlugin">

10 <sequence minOccurs="1" maxOccurs="1">

11 <e lement name="name" type="string"></element>

12 <element name="platforms" type="webinos:tPlatform"></element>

13 </sequence>

14

15 </complexType>

16 <complexType name="tPlatform">

17 <sequence minOccurs="1" maxOccurs="1" >

18 <element name="name" type="string" minOccurs="1"

maxOccurs="1"></element>

19 <element name="path" type="string" minOccurs="1"

maxOccurs="1"></element>

20 </sequence>

21 </complexType>

22

23 <complexType name="t Platforms">

24 <sequence>

25 <element name="platform" type="webinos:tPlatform"></element>

26 </sequence>

27 </complexType>

28 </schema>

Remote usage of plug-in functions

The remote usage of the plug-in can be enabled by building a JavaScript wrapper around the plug-in

itself and exposing the functionality as described in Exposing in Application Functionalities as Service to

other Application.

The following example illustrates how a NPAPI method is being made available to other applications

running in the same personal zone.

Application manifest

http://dev.webinos.org/redmine/projects/wp3-1/wiki/Spec_-_Foundations#Exposing-Application-Functionalities-as-Service-to-other-Applications
http://dev.webinos.org/redmine/projects/wp3-1/wiki/Spec_-_Foundations#Exposing-Application-Functionalities-as-Service-to-other-Applications

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 102 of 276

 1 <widget xmlns="http ://www.w3.org/ns/widgets"

xmlns:webinos="http://www.webinos.org/webinosapplication"

id="http://exampleapp.org/app1">

 2 <content src="widget.html"/>

 3 <webinos:copy - restricted webinos:restricted - to="personal - zone"/>

 4 <webinos:shared>

 5 <webinos:shared - function visibility="personal -

zone">myExposedPluginFunction</webinos:shared - function>

 6 </webinos:shared>

 7 <webinos:plugins>

 8 <webinos:plugin>

 9 <webinos:name>foo</webinos:name>

10 <webinos:platforms>

11 <webinos:platform>

12 <webinos:name>linux</webinos:name>

13 <webinos:path>plugins/meego/foo.so</webinos:name>

14 </webinos:platform>

15 </platforms>

16 </webinos:plugin>

17 </webinos:plugins>

18 </widget>

The application packages conatins a NPAPI plug-in called foo (cf. line 9), which is supported on linux (cf.

line 12). Furthermore the application exposes a JavaScript function callled myExposedPluginFunction (cf.

line 5). This JavaScript function is wrapper function for an exposed NPAPI function as shown in the

following code snipplet.

content.html

 1 <html>

 2 <head>

 3 </head>

 4 <body>

 5 <script>

 6 var myP lugin;

 7 if (navigator.mimeTypes["application/webinos - extension - foo"] &&

navigator.mimeTypes["application/webinos - extension - foo"].enabledPlugin != null){

 8 document.write('<embed type="application/webinos - extension - foo"

i d="plugin">');

 9 myPlugin = document.getElementById('plugin');

10 }else{

11 myPlugin = null;

12 }

13 function myExposedPluginFunction(){

14 if(myPlugin != null){

15 return myPlugin.getSomething();

16 }else{

17 return throw "method not supported";

18 }

19 }

20 </script>

21 </body>

22 </html>

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 103 of 276

In line 7 the application checks, if a plugin exists for a speicifc MIME type. If so, an embed object is

added to the DOM (cf. line 8), which makes it possible to call methods of a NPAPI plugin from JavaScript.

In line 15 the exposed NPAPI method doSomenting is called. If the myExposedPluginFunction() is called

and the MIMEType is not supported, the method throws an error (cf. line 17).

Installation and execution of an extension

During the installion process of the application, the webinos runtime determines the correct NPAPI

binary for the platform and stores it on the local machine, so that rendering engine can iniate the plugin,

when executing the application.

Since NPAPI plug-ins are indified by the supporting MIME-Type inside a Web rendering engine, the

webinos runtime must be able to associate each NPAPI plug-in to a webinos application and make only

those installed plug-ins available which are associated to an application.

Security considerations

We recommend that only applications using plug-in are only executed if they have been signed and

approved by some entity. The signing process is defined in WP 3.5

Web Technologies

Note: The following section is preliminary and may be subject to change in future

versions of the specification.

A Web runtime which is able to render webinos applications and wants to claim to be compliant to the

webinos specification must support the following Web technologies, whereas the concrete mandatory

version and feature set of each one is further defined in the Wholesale Application Community Core

Specification Version 2.0 Section 2 [WACWebTech].

 XML and HTML Markup Language

 JavaScript (JS)

 Cascading Style Sheets (CSS)

 XmlHttpRequest

 Scalable Vector Graphics (SVG)

Beside of the definition of Web technologies to be supported [WACWebTech] defines URI schemes to

allow launching of specific applications. The following URI schemes must be supported by webinos

runtimes:

 "http/https" in order to launch a Web browser

http://dev.webinos.org/redmine/projects/t3-5/wiki/Deliverable_Specifications_Extension_Handling

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 104 of 276

 "tel" in order to initiate a call

 "sms" in order to send a short message service (SMS) message

 "mmsto" in order to send a multimedia massaging service (MMS) message

 "mailto" in order to send an email message

 "data" in order to directly embed content (e.g., data:image/jpeg;base64,

/9j/4AAQSkZJRgABAQAAA...)

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 105 of 276

Authentication and Identity

The authentication and identity mechanisms within webinos form the critical foundations upon which

the many of the more sophisticated functions are built.

In the preceding sections the concepts of the personal zone (both hub and proxy) have been explained.

In this section the details of the authentication mechanism shall be first gently introduced (in the

conceptual architecture section) then formally specified. In deliverable D3.5 the reasoning behind these

architecture decision and threats to security are discussed in detail.

Within webinos, the authentication and identity issues need to be addressed at two distinct levels.

1. Intra webinos authentication: the mechanisms via which users and devices are authenticated by

the personal zone

2. Extra webinos authentication: which describe some utility capability, where the personal zone

hub can assist in the authentication against multiple external Web applications and services,

which are not necessarily webinos based.

We have decided to distinguish these two levels, as within webinos the zone-based authentication

integrates perfectly in the architecture and it meets all the authentication requirements. However, on

the open Internet, strong authentication which involves a third party to prove the identity of a user is

required. Thus different means of authentication will be implemented which can also be used for legally

binding agreements on the Internet.

In addition to that, authentication is done in two steps: first the user is authenticated to at least one of

his devices. Second the device communicates on behalf of the user identifying itself with its public key

and its certificate.

We will deal with intra webinos authentication in this specification. Extra webinos authentication will be

dealt with in phase II of the webinos project. But before we do so, let us remind ourselves of the roles

and responsibilities of the PZP and PZH, with respect the the authentication and identity problem.

Personal Zone:

The personal zone is a conceptual entity, that has meaning to an end user, but from an implementation

perspective is built up of one (and only one) personal zone hub, and many personal zone proxies.

From end users perspective the personal zone hub has the following qualities:

 Web addressable: the personal zone hub is identified by a unique URI.

 Permanently addressable: the personal zone hub should be "permanently" addressable on the

open internet. It is presumed to be highly available.

o SEC-NOTE: it there fore must be robust to denial of service attacks

http://dev.webinos.org/redmine/projects/wp3-1/wiki/Spec_-_Authentication#Webinos-D35

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 106 of 276

 Outgoing messages: the personal zone hub becomes the intelligent agent through which all

outgoing webinos messages are proxied, if there is no peer-to-peer communication set-up

between two devices after authentication

 Incoming messages: the personal zone hub is the entity to which all incoming messages are

directed, and therefore takes responsibility for directing the messages to the right place.

o in the cases where devices have set-up a peer-to-peer connection, incoming traffic is

only routed through the PZH during authentication

 Secure intermediary: the personal zone hub is the end user's policy enforcement point. It should

be aware of and police the end user preferences, with respect to any security relevant action.

 Secure perimeter: as far as the user is concerned, the personal zone hub is a secure perimeter.

People, devices and applications that are granted access to the personal zone are presumed to

be trusted.

 Authentication: the personal zone hub is the entity against which all devices, users, applications

must authenticate (identify) themselves in order to be granted "inter-zone" rights

Each device in the personal zone has its own unique public/private cryptographic key pair. Once the user

is authenticated to a device, the device reveals access to the secure storage which keeps the private key

in a protected environment. The PZP is the only entity which can access the private key. The PZP uses

the private key for mutual authentication within the zone and across zones, and for integrity and

confidentiality of communication between devices.

Personal Zone Hub:

The personal zone hub is a server based entity that orchestrates the behaviour all of the personal zone

proxies, in order to deliver the functionality expected from the personal zone hub.

The PZH acts as a master repository for critical data that must be synchronised between hub and

proxies, in order to deliver the required on-line and off-line functionality.

When being messaged from devices on the open internet, the PZH acts like a DNS server, finding the

most relevant end device application, to which the incoming webinos messages should be routed.

The PZH acts as certification authority (CA) for the entire zone. Each device has a certificate which is

issued by the PZH once the device joins the zone.

Personal Zone Proxy:

An application rarely interacts with the PZH directly, in most cases the application interacts with a PZH

via the PZP.

The PZP therefore intercepts and either directly deals with or forwards the authentication requests.

The PZP intercepts and forwards all outgoing messages.

 FP7-ICT-2009-5 257103

D3.1: Webinos phase I architecture and components page: 107 of 276

The PZP receives and forwards on all incoming messages

The PZP synchronises key information with the PZH to allow it to perform its functions. This data

includes

 critical user identity information (to assist discovery) e.g. email, first name, last name etc

 webinos PZH authentication tokens

 extra webinos, 3rd party service authentication tokens (webinos Phase II)

 identity tokens for trusted devices

 identity tokens for trusted applications

 identity tokens for trusted people

 identity tokens for services that can be accessed from other people

 all policy description files

 context data

 session data

 application data

The webinos-related tokens are represented by certificates. Tokens for 3rd-party services are

authorisation tokens which are issued by an identity provider. Synchronisation is performed as soon as a

PZP established a secure channel with the PZH and whenever data changes while being connected.

Intra webinos authentication

Intra webinos authentication covers all communication within one personal zone or across multiple

personal zones. Authentication is always the same. First the user is authenticated to the device. Second

the device authenticates to one or more other devices. These other devices can be in the same or in

another zone. A device proves its affiliation to a zone by holding a certificate which is issued by the PZH

of that zone. In addition, the device possesses the private key of the key pair of which the public key is

contained in the certificate.

PZP installation process

The PZP is a fundamental and trusted component of a personal zone. For proper security of the entire

personal zone, we must address the issue of how does the PZP get installed upon the device.

The PZP needs to be obtained from a trusted source. The PZH is the most suitable source as it also hosts

the user data which is to be synchronised to the PZP later. On the device which is to be joined to the

